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Two-dimensional infrared (2D IR) vibrational spectroscopy is an experimental tool for investigating molecular
dynamics in solution on a picosecond time scale. We present experimental and theoretical methods for obtaining
a 2D IR correlation spectrum and modeling the underlying microscopic information. Fourier transform 2D
spectra are obtained from heterodyne-detected third-order nonlinear signals using a sequence of broad bandwidth
femtosecond IR pulses. A 2D IR correlation spectrum with absorptive line shapes results from the addition
of 2D rephasing and nonrephasing spectra, which sample conjugate frequencies during the initial evolution
time period. The 2D IR spectrum contains peaks with different positions, signs, amplitudes, and line shapes
characterizing the vibrational eigenstates of the system and their interactions with the surrounding bath. The
positions of the peaks map the transition frequencies between the ground, singly, and doubly excited states
of the system and thus describe the anharmonic vibrational potential. Peak amplitudes reflect the relative
magnitudes and orientations of the transition dipole moments in the molecular frame, the electrical
anharmonicity of the system, and the vibrational relaxation dynamics. The 2D line shapes are sensitive to the
system-bath interactions in solution. We illustrate how 2D IR spectra taken with varying polarization conditions
and as a function of a variable waiting time can be used to isolate and quantify these spectroscopic observables.
As a model vibrational system, we use the strongly coupled asymmetric and symmetric carbonyl stretches of
Rh(CO)2C5H7O2 (RDC) dissolved in hexane and chloroform. The polarization-selective 2D IR spectra of
RDC in hexane are analyzed in terms of two coupled local coordinates to obtain their mutual orientation and
the magnitude of the coupling between them. The 2D line-shape study of RDC in chloroform performed as
a function of the waiting period characterizes the system-bath interactions, revealing that the system transition
energies fluctuate in a correlated manner.

I. Introduction

The complexity of molecular dynamics in solution lies in
understanding the many forces within and between molecules
that lead to the time evolution of molecular and collective
structures and irreversible relaxation processes. Can we find
simplified descriptions of the many covalent and noncovalent
interactions present in a complex system to understand confor-
mational changes in solutes, fluctuations in solvent configura-
tion, and vibrational relaxation processes? Furthermore, does
understanding the local structure and dynamics arising from
short-range intramolecular couplings and solvent interactions
allow the behavior of larger systems to be predicted? The
answers to such questions are at the heart of predicting the
course of chemical reactions and biophysical processes.

Investigations into these phenomena require general experi-
mental methods for describing time-evolving molecular or
collective structures. Effective experimental probes of molecular
dynamics in solution have to be sensitive to structural changes
on picosecond and longer time scales. Also, because transient
structures need not be unique, such methods must statistically
analyze structural variation within an ensemble and show how
this variance evolves with time. One-dimensional (1D) electronic

and vibrational spectroscopies have the intrinsic time-resolution
required for such studies, but interpreting them is generally
ambiguous. When probing a system with many degrees of
freedom, 1D spectroscopy projects the ensemble-averaged
response of the electronic or nuclear coordinates onto one
frequency axis. Analyzing these 1D spectra is an underdeter-
mined problem because they provide a single set of experimental
observables that are mutually affected by multiple molecular
coordinates. Spectra are often featureless, and it is generally
impossible to separate overlapping contributions or line-
broadening processes. More importantly, although the signatures
of different nuclear or electronic coordinates may be present,
the structural and dynamical relationships between these coor-
dinates cannot usually be established.

Multidimensional, nonlinear coherent spectroscopies have
been developed to address this problem by disentangling the
underlying molecular interactions that are obscured in traditional
spectra.1-3 Such techniques use interactions with a sequence
of radiation fields to monitor a system as a function of multiple
time periods or frequency variables. Two-dimensional (2D)
methods have been used for some time in nuclear magnetic
resonance (NMR) as a sensitive tool for determining solution
phase structures. In a 2D NMR spectrum, spectral information
is spread over two frequency axes, and cross peaks between
the resonances on the diagonal axis indicate coupling between* Corresponding author. E-mail: tokmakof@mit.edu.
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spins experiencing different chemical environments.3,4 Knowl-
edge of the spin-coupling mechanism allows information on
connectivity or separation of nuclei to be established. Unfor-
tunately, from a dynamical perspective, 2D NMR has limited
use in studying molecular dynamics in solution because the
measurement time scale is in the millisecond range.

Two-dimensional infrared (2D IR) spectroscopy is a method
that incorporates the structural selectivity of 2D NMR and
circumvents the difficulties with traditional IR or optical
spectroscopies.1,5-7 It is one of the several multidimensional
optical and IR techniques for the study of molecular structure
and dynamics that have been proposed and experimentally
realized in the past decade.1,2,5,7-15 These include 2D Raman
experiments,16-18 2D electronic correlation spectroscopy,19-22

and mixed IR-Raman 2D spectroscopies.23-26 Two-dimensional
IR spectroscopy builds on the methodology developed in
multidimensional NMR3,4 and applies it to vibrational reso-
nances whose frequencies are dictated by bonding and local
environments. This provides the advantage of probing structur-
ally sensitive resonances with high time resolution. As a probe
of time-dependent vibrational energies, couplings, and dipole
orientations, it gives information on transient molecular and
collective structure, structural variation, solute-solvent interac-
tions, and conformational and vibrational dynamics. Two-
dimensional IR spectroscopy can therefore reveal structural
changes accompanying time-dependent chemical and biophysi-
cal processes in solution.

The focus of this paper is Fourier transform 2D IR spectros-
copy. In this third-order nonlinear spectroscopy derived from
IR vibrational echoes,27-30 three femtosecond IR pulses interact
with a multilevel vibrational system. The experiment is char-
acterized by three experimental time delays: the evolution (τ1),
waiting (τ2), and detection (τ3) periods, which follow the three
successive input pulses. In a 2D experiment, the propagation
during the evolution and detection periods is observed by
varying τ1 and characterizing the amplitude and phase of a
nonlinear signal radiated duringτ3 with a heterodyne detection
scheme.20,21,31,32The data are represented through a 2D Fourier
transform as a 2D spectrum that describes the vibrational transi-
tions sampled duringτ1 and τ3. Cross peaks reveal couplings
and orientations between vibrations and the surrounding bath.
The time scale of the experiment (τ1 + τ2 + τ3) is typically in
the picosecond range, offering a short window to sample the
structure and dynamics of the system. Two-dimensional IR
spectra collected as a function ofτ2 (a “relaxation experiment”)
contain signatures of coherent and incoherent vibrational
relaxation processes, spectral diffusion phenomena, and fluctua-
tions in vibrational couplings and angles.22,26,33-36 This informa-
tion forms the basis for describing structural changes and
intermolecular interactions in the condensed phase.

Here we describe our experimental and theoretical efforts in
the development of 2D IR spectroscopy for the study of time-
evolving molecular structures and relaxation processes in solu-
tion. A series of investigations on a rhodium dicarbonyl (RDC)
compound are used to present the methods for obtaining intuitive
2D IR spectra and interpreting them to learn about molecular
structural dynamics. The amplitudes and positions of the various
spectral features in polarization-selective 2D IR spectra of RDC
in hexane are used to characterize the anharmonic coupling and
the dipole projection angle between the asymmetric and
symmetric stretches. This information can be modeled to reveal
a transient structure in solution. We show how 2D line shapes
studied as a function of the waiting time characterize the
interactions of vibrational states with a bath. The changing cross-

peak line shapes in 2D IR spectra of RDC in chloroform
collected as a function of the waiting period reveal correlated
fluctuations of the transition frequencies of the two coupled
vibrations. Such information can be modeled to yield details of
structural variation, solvation, or conformational fluctuations.

The flowchart in Figure 1 summarizes our approach toward
searching for an accurate and physically intuitive picture of
molecular interactions in solution that reproduces the positions,
amplitudes, and line shapes in experimental 2D IR correlation
spectra. The starting point is a complete set of generalized
coordinates that best describe the time-evolving molecular
system under study. These coordinates (Q) are picked to yield
the most intuitive physical picture and can be associated with
a specific nuclear coordinate, a normal mode, or a local mode.
The properties of the system are contained in the Hamiltonian
H̃ S

V(Q), which describes the couplings between the local coor-
dinates. The coupling parameters reflect the underlying structural

Figure 1. Flowchart describing how we search for an accurate and
physically intuitive picture of molecular interactions in solution that
reproduce the positions, amplitudes, and line shapes in experimental
2D IR correlation spectra. We start by selecting a complete set of
generalized coordinates (Q) that yield the most intuitive physical picture.
The HamiltonianH̃S

V(Q) describes the couplings between the local
coordinates and depends on the local structure(s). Appropriate unitary
transformation results in the experimentally measured vibrational
eigenstates (HS). In solution, the system is surrounded by a bath
consisting of solvent and/or remaining solute degrees of freedom as
described by the bath Hamiltonian (HB). The effects of the bath on the
system are incorporated in the system-bath Hamiltonian (HSB), which
is written in the basis of the vibrational eigenstates. The eigenstate
parameters are used to calculate the third-order response function (R6)
and to simulate the experimental 2D spectrum. The decoupling of
molecular structure from its bath-induced dephasing dynamics results
from using a local basis to describe the equilibrium structure and an
eigenbasis to describe the effects of the bath on the system.
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information as dictated by the coupling mechanism. If the system
undergoes conformational fluctuations on the time scale of the
experiment, then the time dependence of the fluctuations in the
couplings between the local coordinates needs to be taken into
account. An appropriate unitary (local-to-eigenstate) transforma-
tion of the above Hamiltonian results in the vibrational
eigenstates whose transition frequencies map onto peak positions
in a 2D IR correlation spectrum.

The local-to-eigenstate transformation is intrinsic in most
existing analyses of coupled vibrations in 2D IR spectra. The
models for one- and two-exciton bands in 2D amide I spectra
by Hamm and Hochstrasser37 and by Mukamel and co-workers38

use transition-dipole-coupled anharmonic oscillators, and the
study of correlated frequency shifts in RDC by Fayer and co-
workers used coupled harmonic local oscillators.29 The nonlinear
exciton model has also been used to simulate the 2D IR spectra
of small peptides and proteins in which the effects of diagonal
and off-diagonal disorder are investigated by allowing for
variation in the coupling strength and energies of the local
modes.39 This disorder arises naturally when the site oscillators
are chosen to reflect conformational change. The ability of 2D
IR spectroscopy to discern different transient structural confor-
mations in the condensed phase is illustrated by recent experi-
ments and molecular dynamics simulations on trialanine7 and
simulations of â-peptide unfolding,40 which introduce off-
diagonal disorder by sampling varying conformations.41

In solution, the local coordinates are constantly interacting
with a surrounding bath. The properties of the bath, which in-
clude the remaining solute and solvent coordinates, are described
in the bath Hamiltonian (HB). The effects of the bath on the
system are incorporated in the system-bath Hamiltonian (HSB),
which we write in the basis of the vibrational eigenstates. The
interaction of the system with the bath can cause fluctuations
as well as shifts in the transition energies of the eigenstates.
Expressions for the line-shape function are derived from the
specific form ofHSB and determine the observed amplitude and
peak shapes. A 2D IR spectrum can be simulated using the
calculated eigenenergies and line-shape functions. Fitting the
simulated and experimentally determined spectra reveals the set
of local coordinates, their couplings between each other, and
the bath modes, which best describe the molecular system under
study.

Modeling the 2D line shapes reveals the details of the
system-bath interaction (HSB), which contains the effects of
the solute-solvent interactions. A description of 2D line shapes
using the simple Bloch model shows that homogeneous and
inhomogeneous line broadening mechanisms are discerned by
the degree of ellipticity of the 2D line shapes.42,43Recent theo-
retical work has largely focused on analyzing 2D line shapes
of two-level systems using the Brownian oscillator model of
Yan and Mukamel.44 This model accounts for arbitrary time
scales in the description of the system-bath interactions and
has been used to model solvation in 2D electronic spectra.33,45,46

For multilevel vibrational systems, it is necessary to describe
the dynamics of multiple transitions.47 A general approach to
this problem that includes all experimental variables has recently
been presented by Sung and Silbey. They obtained analytical
expressions for the third-order nonlinear response function of
a multilevel system coupled to a bath with an arbitrary time
scale.48,49 This is formulated in terms of the auto and cross-
correlation functions of the energy-gap fluctuations, which influ-
ence the diagonal and cross-peak line shapes in 2D spectroscopy.

The paper is organized as follows. The next section describes
our model system of coupled vibrations in detail. In section

III, we report on a general theoretical method to calculate 2D
correlation spectra, which draws on several existing theories of
third-order nonlinear spectroscopy for multilevel systems using
polarized light fields. Section IV outlines the procedure for
obtaining absorptive line shapes in 2D Fourier transform
spectroscopy. The Experimental Section describes the generation
and interferometric detection of the signal field, and the
following data analysis section shows how the raw data is treated
to obtain a 2D correlation spectrum. The analysis of a 2D IR
correlation spectrum in terms of the positions, amplitudes, and
line shapes of its resonances provides an intuitive description
of the system eigenstates and system-bath interactions in
section VII. The next sections interpret the experimental 2D
spectra in terms of local bond-stretch coordinates and correlated
vibrational dynamics of the eigenstates. We end with a discus-
sion of the current results and suggest future directions for this
technique.

II. Model System

The generalized multilevel vibrational system probed by third-
order IR spectroscopies consists of a set ofn fundamental
vibrational states andn(n + 1)/2 two-quantum states. The
transitions into the two-quantum states are combination bands
and overtones, whose energy shifts relative to the fundamentals
reflect the coupling and anharmonicity of the system. We use
the asymmetric and symmetric carbonyl stretches of dicarbo-
nylacetylacetonato rhodium (I) (RDC) dissolved in hexane and
chloroform to study the 2D IR spectroscopy of two coupled
vibrations. RDC (Rh(CO)2C5H7O2) pictured in Figure 2 is a
square-planar d8 compound with two chemically equivalent
terminal carbonyl groups and a bidentate acac (OC(CH3)CHC-
(CH3)O) ligand coordinated to the rhodium metal center. The
same Figure depicts the six lowest-lying vibrational eigenstates
for this particular model system. These six states have been
labeled according to the quanta of energy present in the

Figure 2. Molecular structure of our model system RDC and the
vibrational energy-level diagram for two anharmonically coupled
symmetric and asymmetric CtO vibrations designated as a and s. The
six lowest eigenstates are shown as|as〉, where a and s are the respective
vibrational quantum numbers for the asymmetric and symmetric
stretches. Solid and dashed arrows indicate the harmonically allowed
and harmonically forbidden transitions among the eigenstates, respec-
tively. The actual values of the transition frequencies measured for RDC
dissolved in hexane areωa,0 ) 2015 cm-1, ωs,0 ) 2084 cm-1, ω2a,a)
2001 cm-1, ω2s,s) 2073 cm-1, ωas,a) 2058 cm-1, ωas,s) 1989 cm-1,
ω2a,s ) 1932 cm-1, andω2s,a ) 2142 cm-1.
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symmetric and asymmetric stretches. They include a common
ground vibrational state (0), the two one-quantum states (a, s),
and the three two-quantum states consisting of the overtones
(2a, 2s) and the combination band (as).

The fundamental transitions are observed at 2084 (2085) and
2015 (2014) cm-1 from the FTIR spectra of RDC dissolved in
hexane (chloroform) and are assigned to the symmetric and
asymmetric combinations of the-CtO stretches, respectively.50

The anharmonicity of the nuclear potential, which governs the
-CtO stretching motions, leads to the anharmonic frequency
shifts of the overtone spectrum. These shifts are measured from
the 2D IR correlation spectrum of RDC in hexane at∆s ) 11
cm-1 and ∆a ) 14 cm-1 for the symmetric and asymmetric
vibrations. The combination band, which reflects the coupling
between the carbonyls, is red shifted by∆as ) 26 cm-1 with
respect to the sum of the fundamental frequencies.

The vibrational dynamics of the carbonyl transitions for RDC
in different solvents have been previously characterized with
IR pump-probe and two-pulse IR echo spectroscopy.27,50,51

These studies demonstrated that the narrow line shapes observed
for the -CtO stretches of RDC and other metal carbonyls in
hexane and 2-methylpentane are well described by the motion-
ally narrowed or homogeneous limit. The full width at half-
maximum of the asymmetric and symmetric-CtO stretches
of RDC in hexane from the FTIR spectrum (Figure 8) is
measured to be∼2.6 cm-1, which is significantly narrower than
the anharmonic frequency shifts. This allows us to resolve all
of the possible resonances in a 2D nonlinear experiment, and
we are able to model the structure of RDC on an∼20 ps time
scale through an analysis of the peak positions and amplitudes
of polarization-selective 2D spectra of the molecule dissolved
in hexane.52 The dynamics of the same molecule are completely
different in chloroform, where the line widths of the individual
asymmetric and symmetric transitions are 14.6 and 9.3 cm-1,
respectively, and the anharmonicities remain approximately the
same. 2D IR experiments of RDC in chloroform investigate the
underlying mechanism of this dramatic change in the 1D
absorption line widths and characterize the magnitude and time
scales of the correlations in the transition-energy fluctuations
of the coupled asymmetric and symmetric vibrational modes.35

III. Theoretical Background

Two-dimensional IR correlation spectroscopy belongs to the
general class of time-resolved four-wave mixing experiments
where three femtosecond IR fields with well-defined wave
vectors interact with the sample to generate a nonlinear signal
field that contains the microscopic information of interest. This
section provides the theoretical background for a semiclassical
description of the 2D IR spectroscopy of multilevel vibrational
systems. Our purpose is to provide the reader with an approach
for simulating polarization-selective 2D IR spectra for a system
of coupled vibrations starting from a local or site description
of the system of interest and incorporating the influence of the
surroundings. We draw on the numerous descriptions of third-
order nonlinear spectroscopy present in the literature, but the
emphasis here is on the less commonly described response of
a multilevel system, for which we follow the treatment of Sung
and Silbey.48,49

Theoretical descriptions of nonlinear spectroscopy begin with
a quantum mechanical material Hamiltonian (HM) containing
information about the system under study and an interaction
Hamiltonian (Hint) describing the coupling of the system to
classical external radiation fields. The total material Hamiltonian
is generally written as a sum of the Hamiltonian for the system

(HS), bath (HB), and the system-bath (HSB) interactions. For
the vibrational systems of interest here,HS contains an arbitrary
number of coupled vibrational coordinatesQ, which are
interrogated by the applied radiation. The system Hamiltonian
can be expressed in a basis of the local modes,1,37,52 normal
modes,13,53-57 or eigenstates,47,48depending on the information
of interest.7,58-60 ConstructingHS in a local-mode representation
allows for an intuitive representation of the molecular structural
coordinates of interest. For the purpose of introducing the
interaction with a bath, the system eigenstates are coupled to a
harmonic bath.48,61 The system-bath interaction leads to
fluctuations and shifts in the vibrational transition frequencies,
vibrational relaxation processes, and reorientational dynamics.

The interaction Hamiltonian describing the interaction of the
system with the external radiation fieldsE is

whereM(Q) represents the dipole operator andµa,b ) 〈a|M(Q)|b〉
are the transition dipole matrix elements. Equation 1 expresses
the interaction in terms of the system eigenstates (a, b), which
are described by a set of vibrational quantum numbers. The
dipole operator, expressed as a function of the system vibrational
coordinates, can be expanded in a power series around the
equilibrium position.58,62 The linear expansion coefficientµi

(1)

) (∂M /∂Qi)Q0 is the transition dipole moment reflecting the
change in the charge distribution through the field-induced
displacement of theith vibrational coordinate. The dipole
approximation accounts for only the linear term in the above
expansion, leading to the selection rule for linear IR spectros-
copy of ∆n ) (1 for the vibrational quantum numbern. The
nonlinear dependence of the dipole operator on the vibrational
coordinates, or electrical anharmonicity, is indicated by the
presence of nonzero values of higher-order expansion coef-
ficientsµ(n), which relax the above-mentioned selection rule and
affect the intensity ratios of fundamentals to their corresponding
overtone bands.

The electric fieldE in eq 1 is a real quantity expressed as a
linearly polarized plane wave

wherek is the incident wave vector,ν is the carrier frequency,
æ(t) is the time-dependent phase, andε(t) is the time-dependent
electric-field envelope. The polarization direction of the electric-
field vector is given by the unit vectorĴ expressed in the
Cartesian coordinates of the laboratory fixed frameĴ ∈ {X, Y,
Z}.

Two-dimensional IR spectroscopy measures the third-order
nonlinear polarizationP(3) induced by the interaction of the
material with three IR fields. The formal expression forP(3)

written in the interaction picture after a perturbative expansion
of the interaction Hamiltonian is given by

Hint ) -M (Q)‚E

) - ∑
a,b

|a〉µa,b‚E〈b| (1)

E(k, ν, t) ) ∑
J

Ĵ εJ (t) cos(2πνt + æ(t) - k‚r ) (2)

P(3)(ks, t, τ2, τ1) )

∫0

∞∫0

∞∫0

∞
R6(τ′3, τ′2, τ′1)lE3(k3, ν3, t - τ′3) ×

E2(k2, ν2, t + τ2 - τ′3 - τ′2) ×
E1(k1, ν1, t + τ2 + τ1 - τ′3 - τ′2 - τ′1) dτ′1 dτ′2 dτ′3 (3)
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R6(τ′3, τ′2, τ′1) is the material response function, and the various
time variables in eq 3 are illustrated in Figure 3a. The maximum
of the field envelopes representing their relative positions are
denoted bytn, and the times at which the successive field-
matter interactions occur within the field envelope are repre-
sented byt′n. The delays between the successive input pulses
and the successive field-matter interactions are given byτn )
tn+1 - tn and τ′n ) t′n+1 - t′n, respectively. The experimental
delaysτ1, τ2, andτ3 are known as the evolution, waiting, and
detection time periods, respectively.

The material response for a third-order resonant experiment
is expressed as a four-point correlation function of the dipole
operator and contains information about the time evolution under
the material Hamiltonian,63

HereG0 is the equilibrium reduced density matrix for the system
eigenstates. The commutator in eq 4 can be expanded into eight
terms:61

These represent the set of Liouville pathways pictured in Figure
4 describing the evolution of the system duringτ′1, τ′2, andτ′3
following interaction with the light fields att′1, t′2, and t′3. The
response function is a fourth-rank tensor quantity that contains
not only the information relevant to vibrational dynamics but
also the relative orientation and orientational dynamics of the
dipoles interrogated by the polarized electric fields. Most
descriptions of the nonlinear response assume an isotropic
material Hamiltonian. This assumption is of limited use for
multilevel vibrational systems where the relative orientations
of coupled transition dipoles will affect the material response
function probed by polarized light fields.64-66

Tensorial descriptions of the nonlinear response generally
begin with the simplifying assumption that the vibronic and
rotational degrees of freedom are separable.61,64,67This separa-
tion of variables also allows the transition moments to be written
as a product of a unit vectorµ̂a,b along the coordinate(s) that
couples eigenstatesa and b and the magnitudeµa,b of the
transition dipole matrix element

Following this argument, each of the tensorial responses in eq
5 can be written as a product of an isotropic nonlinear vibrational
response functionRn

a,b,c,d, which describes the vibrational dy-
namics, and a tensorial nonlinear orientational response function
(Yn)IJKL

a,b,c,d, which describes the influence of dipole orientation
and orientational dynamics:64

The indices for the orientational response (I, J, K, L) refer to a
permutation over the laboratory frame indices{X, Y, Z}. The
evaluation of the sum over orientational indices in eq 7 is greatly
simplified when considering the symmetry relationships for
isotropic media, which result in four nonvanishing tensor
componentsYZZZZ , YZZYY, YZYZY, andYZYYZ, three of which are
independent:YZZZZ ) YZZYY+ YZYZY+ YZYYZ.68

Nonlinear Vibrational Response.Using the Liouville path-
ways illustrated in Figure 4, we can write the four vibrational
response functions as48

Figure 3. (a) Pulse sequence and time variables for a 2D IR
experiment. The field-matter interactions occur at timest′n within the
envelope of the three input pulsesEn to radiate a third-order nonlinear
polarization,P(3) at time t following the final pulse. The variablesτn

represent the experimentally controlled delays between successive input
fields measured with respect to the center of the pulses,tn. The variables
τ′n represent the time interval between the field-matter interactions,
(tn+1 - tn). The amplitude and phase of the signal field radiated from
the sample is obtained by mixing it with a well-characterized local
oscillator (ELO) field, which is delayed byτ3 with respect to the final
input pulse. The experimental delaysτ1, τ2, andτ3 are known as the
evolution, waiting, and detection periods, respectively. (b) Noncollinear
“boxcars” phase-matching geometry for the three input fields in 2D
IR spectroscopy. The top panel shows the three beamsER, Eâ, andEø

entering the sample in boxcar geometry and the signal being emitted
in the phase-matched direction:ks ) -kR + kâ + kø.

R6(τ′3, τ′2, τ′1) ) ( i
p)3

〈[[[ M (τ′3 + τ′2 + τ′1), M (τ′2 + τ′1)],

M (τ′1)], M (0)]G0〉 (4)

R6(τ′3, τ′2, τ′1) ) ∑
n)1

4

R6n(τ′3,τ′2,τ′1) - R6n
/(τ′3, τ′2, τ′1) (5)

Figure 4. Evolution of the density matrix for each of the eight terms
resulting from the expansion of the total resonant third-order material
response function given in eq 4. The indicesabcd represent the
eigenstates of the system under study.

µa,b ) µ̂a,bµa,b (6)

R6n(τ′3, τ′2, τ′1) ) ∑
IJKL

∑
a,b,c,d

(Yn)IJKL
a,b,c,d(τ′3, τ′2, τ′1) Rn

a,b,c,d(τ′3, τ′2, τ′1)

(7)
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In the above equations,Pa reflects the probability of occupying
the initial statea. Equation 8 shows that the nonlinear vibrational
response function is a product of the magnitudes of the four
interacting dipoles (µp,q), an exponential oscillating at the system
eigenfrequencies (ωp,q

0 ) (Ep
0 - Eq

0)/p) sampled duringτ′1, τ′2,
andτ′3, and a nonlinear dephasing function (Fn

a,b,c,d).
Analytical solutions for the dephasing functions are obtained

by approximating the system-bath interaction Hamiltonian as
diagonal in the system eigenstates, which describes transition-
energy fluctuations induced by the system-bath interactions.
The time-dependent fluctuations of the vibrational transition
frequencyωp,q can be expressed as the bath-induced frequency
shifts δωp,q about the ensemble-averaged valueωp,q

0 :

The time scales of these fluctuations for the different vibrational
transitions are expressed in terms of the energy gap auto (úpp)
and cross- (úpq) correlation functions48

ú correlates the fluctuations in theωq,a transition-energy gap
with the ωp,a energy gap over a time periodt, wherea is the
initial state of the density matrix. Formulating the nonlinear
dephasing functions in terms of both auto- and cross-correlation
functions demonstrates that 2D vibrational spectroscopies are
sensitive to the correlations between the energy-gap fluctuations
of different vibrational coordinates.13,47,69We include the effects
of population relaxation with a phenomenological exponential
damping constant. The above approximation works well for
molecular systems where the dominant relaxation processes are
bath-induced vibrational dephasing and reorientational dynamics,
such as the metal carbonyls studied here.70-72

In this formalism, arbitrary time scales can be used to describe
the system-bath interactions. Often it is adequate or simpler
to model experimental data in the limits of extremely fast
(homogeneous) or extremely slow (inhomogeneous) time scales
for the system-bath interactions. The explicit expressions for
the nonlinear dephasing functions in the two limiting cases are
given in the Supporting Information.73 For a multilevel vibra-
tional system, the nonlinear dephasing function is expressed in
terms of energy-gap correlation functions involving the ground,
singly, and doubly excited vibrational states.74-78 In the case
of weakly anharmonic systems, this large set of correlation
functions can be reduced by using the harmonic approximation
to express the frequency fluctuations between the one- and two-
quantum states in terms of the frequency fluctuations between
the ground and one-quantum states, as described in the Sup-
porting Information.

Nonlinear Orientational Response. We now turn our
attention to the calculation of the orientational response function,
which has been described in detail in refs 64 and 48 within the
model of orientational diffusion. This response reflects the
sequential projection of the electric fields in the laboratory frame
onto the molecular transition dipole moments for a particular
sequence of electric-field interactions, allowing the rigid
molecules to diffuse orientationally between successive field-
matter interactions. Starting from an isotropic distribution, each
field interaction projects out a subset of molecules from the
evolving orientational distribution. The orientational response
is evaluated by (1) expressing the orientation of the four time-
ordered transition dipole operators in a molecular body-fixed
frame (i, j, k, l ∈ x, y, z) and (2) transforming the motion in the
molecular frame into the laboratory frame through an orienta-
tional average. The four factorsYn differ only in the sequence
of interactions with the electric field:

The transformation of the diffusive orientational motion of the
molecular frame into the laboratory frame is treated classically
and is expressed as a four-point joint probability function:

In the above expression,Ω represents the Euler angles that
transform the microscopic frame into the laboratory fixed frame,
and P(Ω0) ) 1/8π2 is the initial isotropic orientation of the
molecules. Note that the time ordering of the polarization indices
are read from right to left. The termG(Ωn+1, τ′n+1|Ωn) is a
conditional probability that relates the initial orientation of a
moleculeΩn to an orientationΩn+1 after a timeτ′n+1 assuming
thatΩ(t) is a Markovian process on the experimental time scale.
These conditional probability functions have been described for
solutions to various orientational diffusion equations.79,80 The
analytical expressions forỸIJKL

ijkl are tabulated, and the calcula-
tion of the diffusive orientational response is further described
in the Supporting Information. In practice, the summation over
microscopic frame indices in eq 11 is greatly simplified by using
the existing symmetry relations regarding the interchange of
the laboratory and microscopic frame indices.64 A judicious
choice of polarizations for the incident fields or a combination
of experiments with varying polarization can be used to reveal
the relative orientation of the system transition dipole moments
and to separate the contributions of the vibrational and orien-
tational responses in the measured signal.52,81,82

R1
a,b,c,d(τ′3, τ′2, τ′1) ) Pa µc,dµb,cµa,bµd,a exp(-iωd,c

0 τ′3 -

iωd,b
0 τ′2 - iωd,a

0 τ′1)F1
a,b,c,d(τ′3, τ′2, τ′1) (8a)

R2
a,b,c,d(τ′3, τ′2, τ′1) ) Pa µc,bµd,cµb,aµa,d exp(-iωb,c

0 τ′3 +

iωd,b
0 τ′2 + iωd,a

0 τ′1)F2
a,b,c,d(τ′3, τ′2, τ′1) (8b)

R3
a,b,c,d(τ′3, τ′2, τ′1) ) Pa µc,bµb,aµd,cµa,d exp(-iωb,c

0 τ′3 +

iωc,a
0 τ′2 + iωd,a

0 τ′1)F3
a,b,c,d(τ′3, τ′2, τ′1) (8c)

R4
a,b,c,d(τ′3, τ′2, τ′1) ) Pa µa,bµb,cµc,dµd,a exp(-iωba

0 τ′3 -

iωca
0 τ′2 - iωda

0 τ′1)F4
a,b,c,d(τ′3, τ′2, τ′1) (8d)

ωp,q(t) ) ωp,q
0 + δωp,q(t) (9)

úpq(t) ) 〈δωp,a(t) δωq,a(0)〉 (10)

(Y1)IJKL
a,b,c,d(τ′3, τ′2, τ′1) )

∑
ijkl

ỸIJKL
ijkl (τ′3, τ′2, τ′1)[µ̂

c,d‚î ][ µ̂b,c‚ĵ ][ µ̂a,b‚k̂][ µ̂d,a‚ l̂ ] (11a)

(Y2)IJKL
a,b,c,d(τ′3, τ′2, τ′1) )

∑
ijkl

ỸIJKL
ijkl (τ′3, τ′2, τ′1)[µ̂

c,b‚î ][ µ̂d,c‚ĵ ][ µ̂b,a‚k̂][ µ̂a,d‚ l̂ ] (11b)

(Y3)IJKL
a,b,c,d(τ′3, τ′2, τ′1) )

∑
ijkl

ỸIJKL
ijkl (τ′3, τ′2, τ′1)[µ̂

c,b‚î ][ µ̂b,a‚ĵ ][ µ̂d,c‚k̂][ µ̂a,d‚ l̂ ] (11c)

(Y4)IJKL
a,b,c,d(τ′3, τ′2, τ′1) )

∑
ijkl

ỸIJKL
ijkl (τ′3, τ′2, τ′1)[µ̂

a,b‚î ][ µ̂b,c‚ĵ ][ µ̂c,d‚k̂][ µ̂d,a‚ l̂ ] (11d)

ỸIJKL
ijkl (τ′3, τ′2, τ′1) ) ∫dΩ3 ∫dΩ2 ∫dΩ1 ∫dΩ0[ î(Ω3)‚Î] ×

G(Ω3, τ′3|Ω2)[ ĵ(Ω2)‚Ĵ]G(Ω2, τ′2|Ω1)[k̂(Ω1)‚K̂] ×
G(Ω1, τ′1|Ω0)[ l̂ (Ω0)‚L̂]P(Ω0) (12)
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Phase Matching and Pulse Time-Ordering.For the resonant
2D IR experiments described in this paper, we consider three
input fields ER, Eâ, and Eø, each with a unique incident
wavevectorkR, kâ, or kø, respectively. The polarization vectors
of the input fieldsR, â, andø are represented by the indicesL,
K, and J, respectively. These pulses cross in the sample to
generate a third-order nonlinear polarization, which radiates a
signal field in theks ) -kR + kâ + kø phase-matched direction
(Figure 3b). For this phase-matching condition and assuming
the rotating wave approximation, there are 16 double-sided
Feynman diagrams relevant to a multilevel vibrational system
derived from the eight Liouville pathways shown in Figure 4.
These 16 diagrams, illustrated in Figure 5, describe the evolution
of the density matrix for all of the possible time orderings (1-
2-3) of the wavevectorsR, â, andø. Each diagram, in turn,
has a number of components depending on the specific Liouville
pathway for the six eigenstates of our system: the ground state
0, the one-quantum states 1∈ {a, s}, and the two-quantum states
2 ∈ {2a, as, 2s}. The diagrams are broadly separated into two
main categories of rephasing (SI) and nonrephasing (SII andSIII )
third-order response functions. They are further classified by
the time orderings of pulses along the incident wavevectors as
SI ) -k1 + k2 + k3, SII ) +k1 - k2 + k3, andSIII ) +k1 +
k2 - k3.83 In a rephasing (or echo) experiment, the phase
acquired by coherences during the evolution period, eiωpaτ′1, is
the conjugate of that for the detection period e-iωpaτ′3.84 The
nonrephasing diagrams ofSII and SIII evolve with the same
frequency duringτ′1 and τ′3 and cannot rephase macroscopi-
cally. Note that the contributions fromSIII are unique to
multilevel systems, where it is possible to create a vibrational
coherence between the ground state and the two-quantum state
after the first two interactions.

For the purposes of simulating the experimental signals, we
assume that the pulse length in our experiment is much shorter
than any of the vibrational dynamics of interest, making the
evaluation of the triple convolution integral in eq 3 trivial. In
this limit, we take the observed time-domain signal to be

The data are represented as a correlation map of frequencies
through a double Fourier transform

whereω1 andω3 are Fourier transform pairs of the experimental
delays,τ1 andτ3.

IV. Absorptive Line Shapes in 2D FT Spectroscopy

Information about the material response is contained in the
positions, amplitudes, and line shapes of the resonances in a
2D correlation spectrum. For well-separated resonances, an
absolute value 2D spectrum is sufficient to reveal the spectro-
scopic observables necessary to obtain information about
molecular structure and dynamics. In congested absolute value
2D spectra, the broad wings and missing sign of the resonances
hinder the analysis. Even the real value 2D Fourier transform
spectrum of a particular phase-matched signal (i.e., rephasing
or nonrephasing) is not ideal because it contains “phase-twisted”
peaks, with inherently mixed absorptive and dispersive character.
For an intuitive interpretation and simplified modeling of 2D
spectra, purely absorptive features free of distorting dispersive
components are desired.

As observed originally in 2D NMR, the line shapes obtained
from any 2D FT spectroscopy are of a mixed-phase character.3

Absorptive line shapes in 2D spin correlation spectra are
obtained by phase-cycling techniques where two signals oscil-
lating with conjugate frequencies during the evolution period
are added to remove the dispersive character of the phase-twisted

S(ks, τ3, τ2, τ1) ∝ Re[R6(τ3, τ2, τ1)] (13)

S̃(ks, ω3, τ2, ω1) )

Re[∫-∞

∞ ∫-∞

∞
S(ks, τ3, τ2, τ1) eiω1τ1 eiω3τ3 dτ1 dτ3] (14)

Figure 5. Double-sided Feynman diagrams contributing to the
rephasing and nonrephasing Liouville-space pathways for all possible
time ordering of the input fieldsER, Eâ, and Eø given the phase-
matching conditionks ) -kR + kâ + kø. The numberings 0, 1, and 2
represent the ground, first, and second excited states of a multilevel
system. For our model system RDC, 1,1′ ∈ {a, s} and 2∈ {2a, as,
2s}. Note that the polarization indices (I, J, K, L) are read from right
to left.
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peaks.85,86In the case of nonlinear optical and IR spectroscopy,
the use of a noncollinear excitation geometry where the signal
is heterodyne-detected in a specific phase-matched direction
substitutes for phase cycling used in NMR.21,33,61,83,87The phase
relationship between the vibrational frequencies excited during
the initial and final time periods is dictated by the time ordering
of the input pulses for a particular phase-matching geometry.
A 2D IR correlation spectrum with absorptive line shapes is
obtained by the summation of 2D spectra measured by
complementary rephasing and nonrephasing experiments.32

These experiments sampling conjugate frequencies in the initial
time period are performed in a fixed phase-matched direction
by exchanging the sequence of the first two pulses along the
incident wavevectors.

The time sequences for the three input pulses (1-2-3)
entering the sample for the rephasing and nonrephasing experi-
ments areR - â - ø andâ - R - ø. Whenτ2 ) 0 and the last
two pulses are time-coincident on the sample, the pulse orderings
for the rephasing sequenceR - â - ø and R - ø - â are
indistinguishable. Similarly, contributions from the pulse or-
derings â - R - ø and â - ø - R are present in the
nonrephasing experiment whenτ2 ) 0. The Liouville pathways
sampled by the rephasing experiments atτ2 ) 0 are illustrated
in the first two rows of Figure 5, and those sampled in the
nonrephasing experiment are shown in the fourth and sixth row
of the same Figure. The presence of theSIII contribution atτ2

) 0 in the nonrephasing response for multilevel systems avoids
the discontinuity atτ1 ) 0 that has been predicted and observed
for two-level systems in 2D electronic spectroscopy.33,88

Figure 6 offers a pictorial representation of how the sum of
2D spectra obtained from conjugate rephasing and nonrephasing
experiments gives rise to absorptive features. The response
functionsRR andRNR for rephasing and nonrephasing experi-
ments on a two-level system are illustrated in Figure 6a, showing
that the system evolves in conjugate frequencies during the
evolution period. The signal for each of these experiments,
written using the procedure outlined in section III for infinitely
short input pulses, is

In the above expression, the polarization of the input fields is
aligned along theẐ axis in the laboratory fixed frame. We
assume that the dynamics of the system can be described in the
motionally narrowed limit, for whichF2

0,a,0,a ) F1
0,a,0,a )

exp[-(Γaaτ3 + Γaaτ1)] at τ2 ) 0. The time scale of the system-
bath interactions resulting in the fluctuations of the transition
energies of statea with respect to the ground state 0 is given
by Γaa

-1. The only difference in the two signalsSR andSNR is
the oscillation of the system in conjugate frequencies during
the evolution period. The 2D spectra are obtained after a double
Fourier transform of the response functions following eq 14
and settingτ2 ) 0 in the above equations.

The rephasing and nonrephasing 2D spectra are plotted below
their respective response functions in Figure 6b. We see that
the spectral representation of the rephasing and nonrephasing
signalsS̃′R andS̃NR appear in the (-ω1, (ω3) and ((ω1, (ω3)
quadrants of the Fourier plane, respectively. The conjugate
symmetry forS̃′R and S̃NR results from the oscillation of the

system in conjugate frequencies duringτ1 for the two experi-
ments. Figure 6c shows the mirror image of the rephasing
spectrum in the ((ω1, (ω3) quadrants. We will refer to this
mirror image as the rephasing spectrumS̃R in the rest of the
paper, and it will be plotted in the (ω1, ω3) quadrant of the
Fourier plane.

The rephasing and nonrephasing 2D spectra plotted in the
(ω1, ω3) quadrant show phase-twisted line shapes elongated
along the diagonal and off-diagonal axes. This phase-twisted
line shape is composed of absorptive and dispersive features.3,89

Only a slice taken exactly along the resonance in either
frequency dimension yields an absorptive feature. The line shape
becomes distorted for a slice taken slightly off-resonance along
any frequency dimension. The addition of the two spectra,
shown in Figure 6d, yields a purely absorptive feature by
canceling the dispersive components of the individual
spectra.

The purely absorptive line shape shown in Figure 6d results
from the addition of equally weighted rephasing and nonrephas-
ing Liouville pathways. Figure 7 illustrates line shapes obtained
in 2D IR correlation spectra from the summation of unequally
weighted rephasing and nonrephasing pathways. These 2D line
shapes have some mixed-phase character reflected by their
varying tilts from theω1 axis. The degree of phase twist can be
quantified by an angleΨ given by tan(Ψ) ) (AR - ANR)/(AR

+ ANR), where AR and ANR represent the amplitudes of the

SR(ks, τ3, τ2, τ1) ∝ (Y2)ZZZZ
0,a,0,a µ0,aµa,0µa,0µ0,a ×

exp(-iωa,0
0 τ3 + iωa,0

0 τ1) F2
0,a,0,a(τ3, τ2, τ1) + c.c. (15)

SNR(ks, τ3, τ2, τ1) ∝ (Y1)ZZZZ
0,a,0,a µ0,aµa,0µa,0µ0,a ×

exp(-iωa,0
0 τ3 - iωa,0

0 τ1) F1
0,a,0,a(τ3, τ2, τ1) + c.c. (16)

Figure 6. (a) Feynman diagrams for a particular rephasing and
nonrephasing pathway for a two-level system consisting of a ground
(0) and an excited state. (b) Corresponding 2D spectra (S̃′R and S̃NR)
showing phase-twisted features plotted in the (-ω1, (ω3) and ((ω1,
(ω3) quadrants of the Fourier plane, respectively. (c) Mirror image
(S̃R) of the 2D rephasing spectrum plotted in the ((ω1, (ω3) quadrants.
(d) Purely absorptive 2D correlation spectrum obtained from the
addition of the nonrephasing (S̃NR) and rephasing (S̃R) 2D spectra in b
and c.
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rephasing and nonrephasing signals, respectively.3 The above
definition implies that whenANR < AR the 2D line shape will
be tilted along the diagonal axis and 0< Ψ < π/4. Alternatively,
the line shape will be tilted along the off-diagonal axis when
AR < ANR andπ/2 < Ψ < 3π/4.32

There are a number of effects that give rise to differing
amplitudes in the rephasing and nonrephasing signals for a
particular peak in a 2D IR correlation spectrum. The first is an
unequal sampling of rephasing and nonrephasing pathways to
form the same spectral feature in the 2D correlation spectrum.33

For all multilevel vibrational systems, there exists an inherent
asymmetry in the number of rephasing and rephasing pathways
contributing to the formation of some of the features in a 2D
correlation spectrum. This results in the cross peaks being tilted
with respect to the diagonal peaks in the 2D IR correlation
spectrum of RDC in hexane.32 Other than a discrepancy in the
number of pathways, the relative amplitudes of the rephasing
and nonrephasing signals are also affected by microscopic
factors contained in the material response of the system probed
during the two different experiments. These factors include the
effects of dephasing dynamics sampled differently by the
rephasing and nonrephasing experiments.46,69 With respect to
signalsSR andSΝR given in eqs 15 and 16, this would imply
that the two nonlinear dephasing functions are different and as
a resultF2

0,a,0,a * F1
0,a,0,a. The effects of inhomogeneity present

in the system and the degree of correlation of inhomogeneity
between coupled modes are observed experimentally in the 2D
IR correlation spectrum of RDC in chloroform.325 Different
orientational contributionsYIJKL

ijkl to the rephasing and non-
rephasing spectrum also result in phase-twisted line shapes as
seen in the polarization-selective 2D IR correlation spectra of
RDC dissolved in hexane.

V. Experimental Section

Coherent 2D IR experiments on multilevel vibrational systems
are performed using short pulses with enough spectral bandwidth
to excite all of the vibrational transitions of interest. The
experimental technique to obtain 2D IR correlation spectra
involves the production of short, transform-limited mid-IR pulses
and the careful propagation and manipulation of these pulses
through a five-beam interferometer to measure the third-order
nonlinear rephasing and nonrephasing signals. These experi-
ments typically use near-transform-limited, 90-fs pulses centered
at 2050 cm-1 (4.9µm), as illustrated in Figure 8. The generation
and compression of mid-IR pulses at a 1-kHz repetition rate
has been described in detail elsewhere.90 However, it is
important to note that experiments with optimally compressed
pulses at the sample position require the design of an inter-
ferometer that effectively nulls the dispersion experienced by
the IR fields to second order. The IR pulse is overlapped with

a mode-matched He-Ne beam using a Ge Brewster window
(Infrared Optical) to simplify the alignment of the IR through
the five-pulse interferometer. Following the overlap, the pulses
are expanded and collimated in an all-reflective 1:2 telescope
as described in an earlier publication.52 The resultant near-
transform-limited pulses entering the multibeam interferometer
illustrated in Figure 9 are vertically polarized and are 12 mm
in diameter.

The incoming beam is split into three input beamsER, Eâ,
andEø of equal intensity using 50-50 4-mm-thick ZnSe beam
splitters (Rocky Mountain Instrument Co.). The remaining fourth
beam is split into a local oscillator and a tracer beam. The tracer,
which is used for rough alignment and pump-probe experi-
ments, follows the path of the signal and is blocked during the
collection of the 2D data. The intensity and polarization of each
of these five beams are controlled using a zeroth-order 2-mm-
thick MgF2 half-wave plate (Karl Lambrecht Corp.) followed
by a 2-mm-thick ZnSe wire-grid polarizer (Molectron Detector,
Inc.). The optical material in each arm of the interferometer is
balanced by using 4-mm ZnSe compensation plates (Rocky
Mountain Instrument Co.). The three input beams, each with

Figure 7. Phase-twisted line shapes in 2D correlation spectra resulting
from the addition of unequally weighted rephasing and nonrephasing
signals. AR and ANR represent the amplitudes of the rephasing and
nonrephasing signals, respectively. For the five cases illustrated,AR )
0, AR ) (1/2)ANR, AR ) ANR, AR ) 2ANR, andANR ) 0, the phase-twist
angleΨ ) 3π/4, 3π/5, 0, π/10, andπ/4.

Figure 8. Typical pulse spectrum centered at 2050 cm-1 with a fwhm
of 160 cm-1. Underneath the spectral envelope is the linear FTIR
spectrum of RDC in hexane (red) and in chloroform (blue) showing
the two fundamental asymmetric and symmetric transition frequencies
at 2015 and 2084 cm-1. The full width half-maxima of the asymmetric
and symmetric vibrational lines are 2.6 cm-1 in hexane and 14.6 and
9.3 cm-1 in chloroform, respectively. The inset shows an interferometric
autocorrelation of a nearly transform-limited 90-fs mid-IR pulse.

Figure 9. Experimental layout of the five-beam IR interferometer
showing the three input pulsesR, â, andø and the tracer (T) and the
LO pulse. M, gold-coated mirror; BS, 50-50, 4-mm-thick ZnSe beam
splitter; C, 4-mm-thick ZnSe compensation plate; RR, 2 in. cube
retroreflectors; PM, 10-cm focal length parabolic mirrors; WP, 2-mm-
thick MgF2 wave plates; P, wire-grid ZnSe polarizers; S, sample; BS′,
4-mm-thick ZnSe plate (AR coated on one side, uncoated on the other);
A, analyzer; Mo, monochromator; and D, single-channel HgCdTe
detector.
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∼50 nJ of energy, are incident on the sample in a box geometry
and are focused to 150-µm spot sizes using a 100-mm focal
length off-axis parabolic mirror (Janos Technology Inc.). To
ensure optimal overlap at the sample, the three beams are put
through a pinhole placed at the focus of the beams. Zero timing
between the three input and tracer beams is set to within(5 fs
by taking background-free intensity autocorrelations of each
pulse pair in a 0.5-mm-long type I AgGaS2 crystal (Eksma Co.)
placed at the focal plane. The relative timing between the input
pulses is controlled by 2-in. cube retroreflectors (PLX Inc.)
mounted on a stepper-motor-driven linear stage (Newport) with
0.1-µm (0.667-fs) resolution and a repeatability of 1.5µm (10
fs). For the rephasing experiments,ER is followed byEâ and
then Eø, and in the nonrephasing experiments,Eâ enters the
sample initially, followed byER and Eø. Before entering the
interferometer, the IR beam is polarized in the vertical direction
(Z) of the laboratory frame. Polarization-selective 2D IR spectra
are collected at two polarization geometriesZZZZ(parallel) and
ZZYY(crossed) by changing the input polarization of beams
ER andEâ. The waveplates in these two arms are adjusted to
ensure that the same input energy reaches the sample in the
two polarization geometries.

The third-order nonlinear rephasing and nonrephasing signals
are generated in the phase-matched direction,ks, as shown in
Figure 3. To characterize the nonlinear signal field completely,
it is overlapped temporally and spatially with a local oscillator
(LO). After passing through an analyzing polarizer (A), the two
fields are dispersed in a monochromator, Mo 1 (Spex Industries
Inc.), equipped with a liquid-nitrogen-cooled 64-element MCT
array detector (IR Associates, Inc.; each pixel is 0.1 mm wide
with a height of 1 mm). The initial spatial and temporal overlap
is performed using the tracer (which follows the signal path)
and the LO. The LO is spatially overlapped with the tracer on
a 4-mm ZnSe window (BS′) using two irises separated by a
distance of 1 m that monitor the intensity of IR light detected
by a single-channel liquid-nitrogen-cooled MCT detector (Elec-
tro-Optical Systems Inc.). The timing between the LO and the
tracer is set by monitoring their interference on a single-channel
MCT detector placed before the monochromator. We noticed
that the tracer beam does not always follow the same path as
the emitted signal field, and adjustments need to be made in
the signal and LO arms to ensure complete spatial overlap at
the focal plane of the array detector. This is done by introducing
a 1-2 ps delay (τ3) between the LO and the signal fields with
the help of a retroreflector mounted on a computer-controlled
delay stage. The spectral interferogram of the signal and LO
detected at the focal plane of the monochromator displays
interference fringes whose frequency spacing reflects the value
of the delayτ3. The spatial overlap of the local oscillator and
signal fields are adjusted using the mirror pairs M1, M2 and
M3, M4, respectively, to increase the depth of the interference
fringes in the spectral interferogram. Once optimal spatial
overlap is achieved, the position of the LO is moved to setτ3

) 0 as previously determined from the interference between
the tracer and LO fields in an earlier step. We are able to set
the τ3 delay to within(25 fs using this method. The spectral
resolution in theω3 dimension is dictated by the entrance-slit
width of the monochromator (150µm), the linear dispersion at
the focal plane, which is determined by the groove density of
the grating, and the pixel width on the array detector (100µm).
Two different gratings with groove densities of 150 lines/mm
and 90 lines/mm corresponding to spectral resolutions of∼1.3
and∼3 cm-1 are used for experiments on RDC dissolved in
hexane and chloroform, respectively.

The MCT array detector is accompanied by a high-speed
signal acquisition system and data acquisition software (Infrared
Systems Development Corporation) that samples the data
from the array detector at the 1-kHz pulse repetition rate. A
LabView routine is used to collect arrays of spectrally dispersed
heterodyne-detected rephasing and nonrephasing signals as a
function of τ1 by moving the computer-controlled translation
stages forER andEâ. The data for RDC in hexane (chloroform)
is collected by stepping the time delayτ1 in steps of∼2 fs up
to τ1 ) 8(4) ps. A mechanical chopper operating at 500 Hz
chops beamER, and differential detection of the spectral data
at the chopping frequency allows us to isolate the heterodyned
signal of interest. Our experimental signal-to-noise ratio is
determined by the noise on our LO. We adjust the intensity of
the LO to be 10 times the signal intensity for the heterodyne
detection scheme described above. For a particular value ofτ2,
we collect the rephasing and nonrephasing signals followed by
a dispersed pump-probe using the tracer as the probe and the
beamER as the pump beam. The room-temperature 1× 10-3

and 5 × 10-3 M samples of RDC dissolved in hexane and
chloroform are held in a stationary 200-µm-thick CaF2 cell with
4-mm-thick windows corresponding to a peak optical density
of 0.25. We collected 2D IR correlation spectra of RDC in
chloroform for waiting periods ofτ2 ) 0, 1.4, 2.9, 6.2, and
9.5 ps.

In our previously published data,52,53we noticed distorted line
shapes and an incorrect determination of resonant frequencies
sampled during the evolution period, which hinders the inter-
pretation of the resultant 2D spectra. These effects result from
an improper calibration of theτ1 axis due to the limitations of
the stepper-motor-driven linear stages. To remedy this problem,
the τ1 timing was determined externally to within(1 fs by
overlapping pulsesER andEâ after the sample and dispersing
them in a1/4-m homebuilt monochromator (Mo2) with 100-
µm-wide entrance and exit slits and a 300 lines/mm grating.
Interference fringes collected at 1975 cm-1 as a function of the
τ1 delay are used to calibrate theτ1 axis. We have tested our
calibration method by performing a linear FID measurement
of RDC dissolved in chloroform and have compared the resultant
Fourier-transformed line shapes with an absorption spectrum
from a commercial FTIR spectrometer. Using the calibration
technique described above, the line shapes obtained after a
Fourier transform of the FID data matched the FTIR spectrum
within experimental noise.

VI. Data Analysis

The detection monochromator effectively performs a cosine
transform of the overlapped signal and local oscillator fields,
and we detect the interference term of interest by chopping one
of the input beams as described in the previous section. In the
limit where |ELO|2 . |Esig|2, the cosine transform of the
interference term can be written as

In the above expression,ωt is the frequency of the dispersed
signal and local oscillator fields. The delayτ3 is approximately
set to zero as explained in the previous section. Note that the
desired interference term as written in eq 17 is not what the
detector sees. Instead, the array detector measures the intensity
of the light fields integrated over the width of the pixel (2∆ω).
Furthermore, the intensity of the detected light field is a

O(ks, ωt, τ3, τ2, τ1) )

∫0

∞
Esig(ks, t, τ2, τ1) ELO(ks, t - τ3) cos(ωt t) dt (17)
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convolution of the desired signal with an instrument response
function,W(ωt), as shown below,

The instrument response function depends on the characteristics
of the monochromator such as the entrance-slit width, focal
length, and diffraction grating. As a result, the data is sampled
as an array of discrete frequenciesω3 for a particularτ1 delay.
It is important to note that this array is equally spaced in
wavelength but not in frequency. The issues of spectral
resolution and unequal sampling in spectral interferometry have
been the subject of a recent publication by Dorrer et al.91

The signal expressed by eq 18 is depicted as a function of
ω1 and ω3 after a Fourier cosine transform of the data along
the evolution time period:

Before performing the Fourier cosine transform on the data,
the original τ1 axis is calibrated and interpolated to equally
spaced time points represented byτ1

/ in the above equation.
The interpolated data is multiplied by a triangular apodization
function of the same length. This ensures that the data set decays
smoothly to zero and that there are no spectral artifacts present
after performing the Fourier transform. Finally, the data is zero
padded to a length of 215 elements, and then a Fourier transform
is performed, resulting in a spectral resolution of 1 cm-1 in the
ω1 dimension. We notice that using the apodization function
has a slight effect on the 2D line shapes. To nullify this effect,
we multiply our calculated signals used to fit the experimental
data with the same apodization function to extract correct line-
width parameters. Because the monochromator performs the
Fourier cosine transform alongτ3, the 2D rephasing and
nonrephasing spectra obtained after the transform alongτ1 (eq
19) appear in the ((ω1, +ω3) and ((ω1, +ω3) quadrants.

The resultant 2D rephasingS̃R and nonrephasing spectraS̃NR

are added to produce a 2D correlation spectrumS̃C. It is
important to note that we do not know theabsolutephase of
the signal represented by this 2D correlation spectrum. This is
a result of our inability to determine the absolute zero timing
between the input pulses (τ1 ) τ2 ) 0), the error in our ability
to set τ3 ) 0, and phase errors introduced by slight optical
imbalances in the interferometer arms. To correct for the nonzero
timings, we need to “phase” the 2D correlation spectrum in the
ω1 andω3 dimensions. It has been shown using the projection-
slice theorem for 2D Fourier transforms that the projection of
a 2D IR correlation spectrum at a particularτ2 delay onto the
ω1 ) 0 axis is equal to the dispersed pump-probe signal
measured for the sameτ2 value.21 We make use of this fact to
determine the correct phase of our nonlinear signal. This is done
by multiplying the rephasing and nonrephasing spectra by a
factor of exp[-iω1∆τ1 - iω3∆τ3 + iφ] to obtain absorptive
spectral features for slicesω3 ) ωa,0 andω3 ) ωs,0 and to fit
the projection of the 2D IR correlation spectrum to the particular
dispersed pump-probe measurement. Note that this phasing
procedure accounts for timing errors inτ3 when making use of
the projection slice theorem. The phasing in theω1 dimension
to correct for timing errors inτ1 assumes that the 1D line shapes
along the fundamental frequencies are absorptive, which is not
strictly true. We notice that values of(4 fs are generally needed
to phase the 2D spectra, accounting for the experimental timing
errors (∆τ1 and∆τ3).

VII. Characteristics of 2D IR Correlation Spectra

Figure 10 shows the “phased” 2D rephasingS̃R, nonrephasing
S̃NR, and correlation spectraS̃C of RDC in hexane atτ2 ) 0.
The rephasing and nonrephasing spectra exhibit phase-twisted
line shapes elongated along the diagonal (ω1 ) ω3) and the
off-diagonal (ω1 + ω3 ) constant) axes, respectively. Their sum
is the absorptive 2D IR correlation spectrum, where the
dispersive lobes are canceled from the addition of the 2D
rephasing and nonrephasing spectra. The 2D correlation spec-
trum of RDC in hexane depicts 10 resonances with varying

Figure 10. (a) Two-dimensional IR rephasing spectrum, (b) 2D IR nonrephasing spectrum, and (c) their sum, the 2D IR correlation spectrum, for
RDC in hexane atτ2 ) 0. These spectra were obtained in the all-parallel geometry. Fifteen equally spaced contour levels from the minimum to the
maximum value are drawn for each 2D plot.

S(ks, ω3, τ2, τ1) )

∫ω3 - ∆ω

ω3 + ∆ω
O(ks, ωt, τ2, τ1) X W(ωt) dωt + c.c. (18)

S̃(ks, ω3, τ2, ω1) ) 2∫0

∞
S(ks, ω3, τ2, τ1

/) cos(ω1τ1
/) dτ1

/

(19)
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signs, amplitudes, and tilts. We will refer to the different peaks
in the 2D IR correlation spectrum as lying along the diagonal
and off-diagonal axes according to their numbering scheme
displayed in Figure 10c. In particular, peaks 1(1′) and 2(2′) are
referred to as the diagonal and cross peaks, respectively.

Any nonlinear response for a purely harmonic system is zero.
This implies that the very existence of a third-order material
response requires vibrational interactions, which include (1)
anharmonicity in the ground-state potential, (2) a nonlinear
dependence of the transition dipole moment on the vibrational
coordinates, or (3) nonlinear coupling in the system-bath
interactions.54,55,78,92These effects are reflected in the positions,
amplitudes, and line shapes in the 2D IR correlation spectrum.
The positions of the peaks describe the transition frequencies
of the vibrational eigenstates of the system. The peak amplitudes
reflect the relative magnitudes and orientations of the transition
dipole moments in the microscopic frame. The 2D line shapes
are determined by the details of the system-bath interactions,
which could result in the statistical variation of the eigenenergies
in systems with coupled transition dipoles. These three observ-
ables functionally give a detailed characterization of the system
eigenstates and the system-bath interactions, which will form
the basis for modeling transient molecular structure and solvation
dynamics. Here we will use 2D IR correlation spectra of RDC
dissolved in hexane to characterize the energies and transition
dipoles of the system eigenstates. The interaction of RDC with
hexane is weak, allowing the solvation dynamics to be treated
in the homogeneous limit. This is not the case for RDC dissolved
in chloroform, and its 2D correlation spectra describe the effects
of solvation dynamics on 2D line shapes.

A. Position and Sign of Resonances.The position of
resonances in the 2D spectrum of RDC is dictated by the
consecutive interactions of the multilevel vibrational system with
a sequence of three electric fields. Theω1 axis represents the
frequency of the vibrational coherences excited after the first
field-matter interaction; therefore, all the peaks in this dimen-
sion lie along the fundamental transitions:ω1 ) ωa,0 andω1 )
ωs,0. Theω3 axis indicates the state of the system after the third
interaction, and we observe six possible resonance frequencies
corresponding to the six transitions shown in the vibrational
energy-level diagram of RDC in Figure 2. The diagonal peaks
1 and 1′ in Figure 10 represent four field interactions with the
fundamental transitions, whereas cross peaks 2(2′) involve the
transfer of coherence from one fundamental transition to the
other. The remaining, oppositely signed peaks involve signals
radiated from coherences involving the two-quantum states. For
example, peak 3 (shifted below the diagonal peak) arises from
a transition between the symmetric overtone (2s) and its
fundamental (s), whereas peak 4 (shifted below cross-peak 2)
arises from a transition involving the combination band (as)
and the symmetric fundamental (s). The specific time-ordered
interaction sequences contributing to the formation of each of
these 10 peaks can be obtained by expanding the double-sided
Feynman diagrams in Figure 5 in terms of the six eigenstates
of RDC. This expansion leads to a total of 66 diagrams, when
considering all of the possible transitions resonant with the mid-
IR fields including the harmonically allowed one-quantum and
the harmonically forbidden three-quantum transitions. (These
diagrams are presented in Supporting Information.73)

The positions of the peaks characterize the anharmonic
nuclear potential of the coupled asymmetric and symmetric
carbonyl stretches. The splittings between the labeled peaks
correspond to anharmonic frequency shifts of the overtones (∆a

) 14 cm-1, ∆s ) 11 cm-1) and the combination band (∆as )

26 cm- 1). The signs of the peaks indicate whether the system
evolves in a superposition of the fundamental and the ground
state (positive) or in a superposition of the fundamental and
doubly excited states (negative) during the detection period. The
observed peak splittings in the 2D spectrum are related to the
anharmonic expansion terms in the nuclear potential describing
the coupled carbonyl stretches using normal or local vibrational
coordinates.7,54 In the limit of a harmonic nuclear potential,∆a

) ∆s ) ∆as ) 0, and oppositely signed resonance peaks 3 and
5 would lie on top of peak 1 and peak 4 would lie on top of
peak 2. These peaks would destructively interfere, leading to a
decrease in or the disappearance of the peaks in the 2D spectrum.
This explains the appearance of cross peaks for coupled
vibrations. For two uncoupled vibrations, the off-diagonal
anharmonicity∆as) 0, and the cross peak vanishes because of
destructive interference between pathways that lead to peaks 2
and 4. The presence of 10 distinct peaks in the 2D IR correlation
spectrum of hexane indicates that there is a nonlinear depen-
dence (cubic and higher) of the nuclear potential on the
vibrational coordinates, which satisfies the first selection rule
for 2D IR spectroscopy.

B. Peak Amplitudes.Although the positions of the peaks in
a 2D IR correlation spectrum are dictated by the transition
frequencies between system eigenstates probed by the sequence
of external fs fields, their amplitudes are determined by the
relative strength and direction of the four interacting transition
dipoles. An analysis of the relative peak amplitudes reveals (1)
information about the projection angle between transition dipoles
of the eigenstates and (2) the presence of electrical anharmo-
nicity in the system or the nonlinear dependence of the transition
dipole moments on the vibrational coordinates. Such an analysis
requires separating the nonlinear vibrational and orientational
response functions because they contain complementary infor-
mation about the amplitudes and relative angles of the transition
dipoles, respectively.

To separate out these two contributions, we measure the 2D
IR correlation spectra in two different polarization geometries,
which sample response functions differing only in the orienta-
tional factors,YIJKL. For a particular resonance, the ratio of its
amplitude from two different geometries yields information
about the angle(s) between transition dipoles involved in its
formation. In the case of cross peaks, this gives direct informa-
tion on the projection angle between two coupled transition
dipole moments.64

The effects of electrical anharmonicity are revealed by com-
paring the ratio of the amplitudes of oppositely signed peak
pairs in 2D IR correlation spectra collected in two different
polarization geometries. For a linear dependence of the dipole
moment on the vibrational coordinate, the transition dipole
moment amplitudes connecting the zero- (0-) and one- (1-) quan-
tum statesµ1,0 to those connecting the one- and two- (2-) quan-
tum statesµ2,1 follow harmonic scaling, andµ2,1 ) x2 µ1,0. In
this limit, the amplitudes of the oppositely signed peak pairs, 1
and 3 or 2 and 4, would be equal. A nonlinear dependence of
the transition dipole vectors on the vibrational coordinates results
in the variation of the amplitude in these peak pairs.

The second row in Figure 11 shows polarization-selective
2D IR correlation spectra of RDC in hexane collected in theZ
- Z - Z - Z and Z - Z - Y - Y polarization geometries
(R-â-ø-sig). We refer to these as the parallelS̃| and crossed
S̃⊥ 2D IR correlation spectra. Because these spectra are collected
for τ2 ) 0, the time-ordering (1-2-3) of pulsesR - â - ø
and R - ø - â are indistinguishable for the rephasing
experiment. This implies that the rephasing experiment in the
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crossed polarization geometry samples both theYZZYYandYZYZY

tensor elements of theSI response function. Similarly, the pulse
sequencesâ - R - ø andâ - ø - R cannot be separated in
the nonrephasing experiment forτ2 ) 0, and the nonrephasing
experiment samples theYZZYY andYZYZY tensor components of
the SII andSIII responses, respectively.

The peak positions in each of the polarization-selective spectra
are identical; however, the relative amplitudes and tilts of the
various peaks are different. The ratios of the amplitudes of the
cross peaks to the diagonal peaks are approximately∼1/4 and
∼1 in the 2D spectra obtained in the parallel and crossed
polarization geometry, respectively. Additionally, the diagonal
amplitude of the crossed-polarized 2D spectra is∼1/4 that of
the spectrum obtained in the all-parallel geometry.

The dependence of the amplitude ratios for a particular peak
in the two experiments (A⊥/A|) can be related to the projection
angle between the two fundamental transitions,Θ, using the
orientational response functions contributing to a particular
peak.64,65 Figure 12 shows a plot ofA⊥/A| as a function ofΘ
for the diagonal and cross-peak amplitudes in the 2D IR
correlation spectra between the transition dipoles of two
vibrational modes. As the angle between the dipole varies from
parallel to orthogonal, the cross-peak ratio varies from1/3 to
7/6, and the diagonal peak ratio varies from1/3 to 6/23. The
calculation in Figure 12 is for the caseτ2 > 0, but it also holds
at τ2 ) 0 provided that the transition dipole vectorsµ̂1,0 and

µ̂2,1 are parallel to each other. The latter assumption is nearly
true for our present case because of the intrinsic symmetry of
the molecule. A comparison of the amplitudes of the cross and
diagonal peaks from the slices alongω3 ) ωs,0 plotted on the
first row of Figure 11 reveals ratios of∼1 and∼1/4, respectively,
indicating that the transition dipole vectors of the coupled
asymmetric and symmetric stretches are orthogonal.

In addition to revealing the angle between the coupled
carbonyl stretches, a comparison of the polarization-selective
spectra indicates the presence of electrical anharmonicity. In
the experimental 2D spectra of Figure 12, we notice that the
amplitude of peak 1 is greater than that of the negatively signed
peak 3, and this ratio of amplitudes is unchanged with different
polarization geometries. Similarly, the amplitude of peak 2 is
greater than that of peak 4. These observations imply thatµ2s,s

* x2 µs,0 andµas,a* µs,0. The effects of electrical anharmo-
nicity on the peak amplitudes of 2D IR spectra have been treated
in detail in ref 54. The presence of electrical anharmonicity for
a mechanically harmonic system (∆a ) ∆s ) ∆as ) 0) ensures
that the interference between pathways involving only the
fundamental states and those involving the two-quantum states
will be incomplete, resulting in the nonzero amplitude of the
2D IR correlation spectrum. Generally, both electrical and
nuclear anharmonicity result in a deviation from harmonic
scaling for the amplitudes ofµ1,0 andµ2,1 and also make these
two transition dipoles noncollinear with respect to each other.

It is important to note that the amplitude of peaks in the 2D
IR spectrum are affected by relaxation processes during all three
time variables. Coherent and incoherent population relaxation
or exchange processes lead to a change in peak amplitudes both
through changes in amplitude in the density matrix elements
for the system arising from these relaxation processes34 and also
through changes in the orientational projections of the fields
onto the dynamically evolving system. These effects are not
discussed explicitly here but are the subject of ongoing work.

C. 2D IR Line Shapes.The line shape of a given resonance
in a 2D IR spectrum reflects the effects of the bath on the four
interacting transition dipoles. Here, we will restrict ourselves
to exploring only the effects of vibrational dephasing on the
2D IR line shape based on a linear interaction between the
system and bath coordinates. Within this model, the 2D line
shape allows us to describe quantitatively the time scales of
the transition frequency fluctuations by characterizing the
system-bath correlation functionsú.35,48This can be illustrated

Figure 11. Experimental and calculated 2D correlation spectra obtained
in the ZZZZandZYYZpolarization geometries for RDC in hexane at
τ2 ) 0. The middle row shows the experimentally collected 2D
correlation spectra. Slices from these spectra taken atω3 ) ωs,0 are
shown in the top panel. The bottom row depicts the calculated 2D
spectra using the eigenstate parameters obtained from the best-fit results.
Twenty-one equally spaced contour levels from the minimum to the
maximum value are drawn for each 2D plot.

Figure 12. Ratio of the diagonal and cross-peak amplitudes (A⊥/A|)
in the 2D IR correlation spectra obtained in the parallel and crossed-
polarization geometries as a function of the angleΘ between the
transition dipoles of two coupled vibrational modes. The plot is shown
for the case whenτ2 > 0, but it also holds atτ2 ) 0 provided that the
transition dipole vectorsµ̂1,0 and µ̂2,1 are parallel to each other.
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through calculations of the 2D line shape for a two-level system
using a stochastic model for the frequency fluctuations. In this
model, the transition frequency fluctuates with an amplitudeσ
and a characteristic correlation timeτc andú(τ) ) σ2 exp(-τ/
τc). This model can be continuously varied between the
homogeneous (στc , 1) and inhomogeneous (στc . 1) limits
of the system-bath dynamics.93

Figure 13 shows simulations of the 2D line shape for a two-
level system within this stochastic model for different values
of στc varying from homogeneous to inhomogeneous. Forστc

) 0.1 (Figure 13a), the 2D correlation spectrum shows a
homogeneously broadened, symmetric diamond line shape. The
homogeneous limit implies that the time scale of the energy
gap fluctuations are fast compared to the experimental time
scalesτ1, τ2, andτ3. This results in exponential dynamics during
τ1 andτ3, which are reflected by the diamond-shaped line.42,46

When the system-bath dynamics are homogeneous, the rephas-
ing (Figure 13d) and nonrephasing (Figure 13g) 2D spectra have
the same amplitude and show the characteristic phase-twisted
line shapes aligned along the diagonal and antidiagonal axes,
respectively.32,69The degree of elongation of the line shape along
the diagonal axis increases with increasingστc (Figure 13a-c).

Figure 13c shows the 2D correlation spectrum in the
inhomogeneous limit (στc ) 10), where the experimental time
scales are much shorter than the time scale of the transition
fluctuations. For this limit, the ensemble can be described as a
static distribution of homogeneous line shapes summed along
the diagonal. The diagonal slice is representative of the width
of the distribution (σ), whereas a slice along the antidiagonal is
a measure of the homogeneous line width for the ensemble

(σ2/τc).42,43The rephasing and nonrephasing spectra in this limit
are shown in Figure 13f and i, respectively. Because the
individual homogeneous line shapes in the rephasing and
nonrephasing 2D spectra lie along the diagonal and off-diagonal
axes, respectively, the summation of contributions from the
ensemble along the diagonal leads to constructive interference
in the former case and destructive interference in the latter. This
result explains the much higher intensity and diagonal elongation
of the rephasing spectrum relative to the nonrephasing spec-
trum.35,69 The inhomogeneity of the system can therefore be
indirectly related to the relative amplitude of the rephasing (AR)
and nonrephasing spectra (ANR). As defined in section IV, this
ratio can be expressed as an angleΨ given by tan(Ψ) ) (AR -
ANR)/(AR + ANR). These observations can also be explained from
the dynamics of the ensemble in the time domain. In a rephasing
experiment, the dephasing experienced by the static ensemble
duringτ1 is rephased duringτ3 because of the conjugate nature
of the phase acquired by the coherences in the two periods.
This results in the formation of a strong echo whenτ1 ) τ3, the
Fourier transform of which directly corresponds to the diago-
nally elongated 2D line shape in the rephasing spectrum. In the
nonrephasing experiment, the decrease in the signal level during
τ1 due to inhomogeneous dephasing continues uninterrupted
during τ3, reflecting the low amplitude yet roughly symmetric
line shape in Figure 13i. It should be noted that even though
the rephasing and nonrephasing spectra in the inhomogeneous
limit are of different amplitudes the dispersive components of
their phase-twisted line shapes are still properly canceled in the
2D correlation spectrum (Figure 13c).

Following the above model calculations, the diamond-shaped
peaks observed in 2D correlation spectra of RDC in hexane are
indicative of a homogeneously broadened system where the
rephasing and nonrephasing experiments sample the same
dynamics. However, all of the peaks in the 2D IR correlation
spectrum of Figure 10c do not have purely absorptive features,
with some of the peaks retaining a partially phase-twisted
character. We have shown elsewhere that in a multilevel
vibrational system there is an inherent asymmetry in the
rephasing and nonrephasing Liouville pathways contributing to
the formation of the 10 resonances.32,73For example, in the case
of peak 2(2′), there are twice as many rephasing pathways as
nonrephasing pathways. Also, only nonrephasing pathways
contribute to the formation of peak 5(5′). Using this information,
we would predict that the 2D IR correlation spectrum would
show peaks 2(2′) and 5(5′) tilted along the diagonal and off-
diagonal axes, respectively, as indeed is the case. We see that
the line shapes of peaks 2(2′) and 4(4′) are tilted by ap-
proximatelyπ/10 from the ω1 axis. However, peaks 1(1′) and
3(3′) are symmetric about theω1 axis and purely absorptive in
nature, suggesting that they have equal amplitudes in the
rephasing and nonrephasing 2D spectra. A comparison of the
polarization-selective 2D IR spectra of RDC in hexane reveals
how microscopic factors such as the tensor components
measured in the rephasing and nonrephasing experiment affect
the tilts of the various features in a 2D IR correlation spectrum
for a homogeneously broadened system. In particular, we see
that cross peaks inS̃⊥ are almost symmetric about theω1 axis
and those inS̃| are phase-twisted and tilted toward the diagonal
axis.

VIII. Modeling Transient Structure

The analysis of the positions, amplitudes, and line shapes of
the various peaks in the 2D IR correlation spectra of RDC
characterizes the system eigenstates and the specific system-

Figure 13. Characteristic 2D line shapes for a two-level system
undergoing stochastic modulation of the transition frequencyωa,0whose
correlation function is defined as〈δωa,0(t) δωa,0(0)〉 ) σ2e-t/τc with
fluctuation amplitudeσ and correlation timeτc. The spectral line shapes
describe the limits of fast fluctuations or the low-amplitude regime
(homogeneous,στc ) 0.1) (a, d, and g), the intermediate regime (στc

) 1) (b, e, and h), and the slow fluctuations (inhomogeneous,στc )
10) regime (c, f, and i). The labelsS̃C, S̃R, andS̃NR correspond to 2D
correlation, rephasing, and nonrephasing spectra, respectively. Note that
as the system-bath interaction dynamics move from the fast to the
slow limit the 2D line shape goes from being symmetric (a) to being
diagonally elongated (b, c). Also, the relative amplitudes of the
rephasing spectra (d-f) increase with respect to those of the non-
rephasing spectra (g-i). The contours are plotted at 8% intervals.
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bath interactions of our six-level vibrational system. These
observables allow us to model structure, understand the variation
of molecular conformations, and follow the relaxation and
conformational dynamics of molecules in the condensed phase
on the time scale of our experiment. In the case of RDC
dissolved in hexane where the interaction with the solvent is
particularly weak and the individual line widths of the transitions
are much narrower than the anharmonic frequency shifts,
polarization-selective 2D IR spectra provide an intuitive map-
ping of the system eigenstates and reveal the orthogonal
projection angle between the two transition dipole vectors of
the symmetric and asymmetric states. These eigenstates are
delocalized over the molecule; therefore, their characterization
does not provide an immediate and obvious connection to local
transient structure. Using a local-mode description, we can relate
these eigenstate parameters to the coupling strength and angle
between the CtO bonds. The analysis builds on ref 52, where
we extracted local-mode parameters of the same molecule from
its absolute value 2D rephasing spectrum.

The 2D correlation spectra of RDC are modeled in terms of
local carbonyl bond stretches with reduced vibrational coordi-
natesQm andQn. Their transition dipole vectors,µm

(1) andµn
(1),

lie along the CtO bond and are aligned at an angleθ with
respect to each other. The bond stretch coordinates are
represented as cubic anharmonic oscillators coupled through a
bilinear interaction. The local vibrational system Hamiltonian
H̃S

V is given below:

In the above expression, the bilinear coupling constant is given
by Vij and the cubic anharmonic coefficients are represented
by giii . Equation 20 assumes symmetry with respect to the order
of indicesm and n in the definition of the bilinear coupling
constant.

The transition dipole vectors among the eigenstates are
obtained by writing the dipole operator in terms of the local
coordinates and performing the appropriate transformation to
the eigenbasis. To account for the electrical anharmonicity
observed in the experimental 2D correlation spectra, the dipole
operator in the local basisM̃ , is expanded to the third order in
each of the local vibrational coordinates as shown below,

In eq 21,µm
(1) andµm

(3) are the first- and third-order expansion
coefficients of the dipole vectorµm evaluated at the equilibrium
configuration. The second-order expansion is ignored because
those dipole matrix elements do not contribute to the resonant
transitions observed in this experiment. The transition dipole
moments between the eigenstates of the system Hamiltonian
HS are obtained by performing the appropriate unitary trans-
formation.

The parameters in the HamiltonianH̃S
V describing the two

local vibrations are found by fitting the experimental 2D
correlation spectraS̃| andS̃⊥. We obtain analytical expressions
for the observed signals following the procedure outlined in
section III and assuming infinitely short input pulses. The fitting
routine involves writing out the system Hamiltonian and dipole
operator in the local basis using eqs 20 and 21 and accounting

for vibrational states with 10 quanta of energy. The matrices
are then transformed to obtain the eigenenergies, eigenvectors,
and transition dipole vectors of the six lowest-lying vibrational
states. Using the obtained eigenstate parameters, appropriate
line-shape functions characteristic of a homogeneously broad-
ened system, the correct orientational factors, and the 2D
correlation spectra for the parallel and crossed polarization
geometries are calculated. We assume that the parameters in
the local Hamiltonian are invariant to indicesm andn because
of the intrinsic symmetry of the molecule in which the two
carbonyl stretches are chemically equivalent. All of the dephas-
ing constants are set equal to the value (Γpq ) Γ), as indicated
by the identical line widths of all the resonances in the 2D
correlation spectra in both of the frequency dimensions. A total
of six parameters are floated, includingωm

0 ) ωn
0, Vmn, gmmm)

gnnn, θ, µmmm
(3)/µm

(1) ) µnnn
(3)/µn

(1), and Γ. These parameters
are refined to obtain the best fit to the experimental 2D spectra.
In the above analysis, there are no assumptions made regarding
the relative orientations of all six transition dipoles.

The nonlinear least-squares fitting of the experimental data
resulted in the following values for the best-fit parameters:ωm

0

) ωn
0 ) 2074( 1 cm-1, Vmn ) 35 ( 0.5 cm-1, gmmm) gnnn )

172( 1 cm-1, θ ) 91(1°, µmmm
(3)/µm

(1) ) µnnn
(3)/µn

(1) ) -0.4,
andΓ ) 2 ( 1 cm-1. The 2D correlation spectra shown in the
last row of Figure 11 are simulated using the results of the best
fit and are successfully able to reproduce the positions, relative
amplitudes, and line shapes of all of the resonances in the
experimental spectra. All of the parameters of the local
Hamiltonian and the eigenstates are tabulated in Table 19S of
the Supporting Information. The bilinear coupling constant,
frequencies, and cubic anharmonicities of the local stretches
determine the accurate positions of the peaks in the 2D IR
spectrum. The angle between the local stretches and the
magnitude of the third-order coefficients of the dipole operator
determine the relative amplitude of the 10 resonances in the
2D IR spectrum, and the value ofΓ reflects the width of the
2D line shape in both dimensions.

The analysis reveals the accurate positions of the fundamental
frequencies atωa,0 ) 2015 cm-1 and ωs,0 ) 2084 cm-1, and
the corresponding anharmonic splittings of the higher-lying
states∆a, ∆s, and∆as are 14, 11, and 26 cm-1, respectively.
The value ofΓ reflects the line width of the fundamental
transitions obtained from linear FTIR measurements. The value
of the angle,θ, between the transition dipoles of the two local
modes was found to be 91( 1° which affects the amplitudes
of the transition dipoles between the fundamental eigenstates
found to beµs,0 ) 0.9µa,0.94 This result is consistent with
previously measured 2D IR rephasing spectra and with data
obtained from X-ray crystallography.52,95It should be noted here
that because of the intrinsic symmetry of the molecule any value
of θ would result in the two fundamental transition dipoles being
mutually orthogonal.

The electrical anharmonicity of the local-mode transition
dipoles results in the nonharmonic scaling of the amplitudes of
the transition dipoles among the six eigenstates. For example,
we note thatµ2a,a) µ2s,s) 1.2µa,0 andµas,a) µas,s) 0.7µa,0 as
reflected in the unequal amplitudes of the peak pair 1(1′) and
3(3′) and the pair 2(2′) and 4(4′) in the experimental 2D spectra.
The fact that the observed amplitudes of the transition dipoles
are less than their harmonic values is indicative of the negative
value ofµmmm

(3) andµnnn
(3) . The amplitudes of the transition dipole

moments between the eigenstates are also affected by the
diagonal and off-diagonal cubic anharmonic terms, although to
a lesser extent than the electrical anharmonicity. For instance,

H̃S
V(Qm,Qn) ) 1

2
pωm

0Qn
2 + 1

2
pωn

0Qn
2 + VmnQmQn +

1
6

(gmmmQm
3 + gnnnQn

3) +
Pn

2

2m
+

Pm
2

2m
(20)

M̃ (Qm, Qn) ) µm
(1)Qm + 1

6
µmmm

(3) Qm
3 + µn

(1)Qn + 1
6

µnnn
(3) Qn

3

(21)
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if we setµ(3) ) 0 leaving the other parameters the same, then
the transition dipoles deviate from harmonic scaling by a
maximum of 4%.

The above analysis also reveals the angles between the
transition dipoles of the eigenstates connecting the zero- to one-
quantum states (µ1,0) and those connecting the one- to two-
quantum states (µ2,1), and the analysis and results are given in
the Supporting Information. For a harmonic system, we would
expect the two angles to be parallel to each other. Although we
have an anharmonic system, we notice that the angles deviate
very slightly from harmonic behavior. The slight discrepancy
arises from the presence of the electrical anharmonicity. Because
of the intrinsic symmetry of the molecule and the degeneracy
of the two local stretches, the effects of mechanical anharmo-
nicity on the amplitudes and relative orientations ofµ1,0 and
µ2,1 are negligible. Ongoing studies of 2D IR spectra of RDC
in hexane collected as a function of the waiting period provide
evidence of coherence transfer and incoherent population
transfer among the two-coupled symmetric and asymmetric
eigenstates. These relaxation processes will affect the determi-
nation of angles between the two coupled vibrations and affect
the parameters in the local Hamiltonian as well as the electrical
anharmonicity of the local transition dipole operator.

A more detailed picture of molecular structure from the above
analysis requires an understanding of the vibrational coupling
mechanism. The extent to which this is understood directly
determines the type of structural information that can be
accessed through 2D IR spectroscopy. Generally speaking,
“through-bond” and “through-space” interactions between two
vibrational coordinates will affect the magnitude of their
coupling. For through-bond covalent interactions, couplings can
be related to connectivity. The electrostatic through-space
interactions have well-defined distance scaling relationships and
can potentially relate couplings to intra- and intermolecular
distances. For the particular case of the strongly coupled
vibrations in RDC, the coupling is thought to arise from covalent
interactions of the carbonyl groups with the Rh metal center
primarily through dπ-π* back-bonding effects.96 In the case
of weakly coupled amide I vibrations in small peptides, the
coupling has been modeled in terms of through-space Coulombic
interactions.37,97,98 Recent ab initio studies on the coupling
between the amide I modes of a glycine dipeptide analogue
reveal that one needs to account for through-bond effects
characterizing the anharmonicity of the nuclear potential along
with couplings between a distribution of transition charges to
obtain quantitative agreement with experimental results.7,99,100

IX. Correlated Dynamics from 2D Relaxation
Experiments

In the preceding sections, we have focused on the sensitivity
of the 2D IR correlation spectroscopy to the details of the system
Hamiltonian,HS. This molecular information has been primarily
based on fitting the positions and amplitudes of resonances in
polarization-selective 2D IR spectra. For RDC, the interactions
with hexane are very weak, leading to the narrow, homoge-
neously broadened 2D line shapes. Therefore, the effects of the
solvent on the solute’s transition energies can be largely ignored,
providing a convenient model system to describe with a single
unique structure. In general, the system-bath interactions are
stronger, and the effects of fluctuations of transition energies
within an ensemble have to be taken into account. In this case,
the 2D line shapes are the observable of interest for determining
the time scale and magnitude of the solvation effects, as
illustrated in Figure 13. For the dynamics of a system of coupled

vibrations, we must additionally be concerned with the correla-
tion between the fluctuations of different energy levels,101-104

which is revealed in the 2D line-shape analysis of cross
peaks.35,69,105

A. Correlated Transition-Energy Shifts. For two coupled
vibrationsp andq, the nature of the microscopic system-bath
interactions and the way in which they affect the coupling may
lead to a statistical interdependence between the individual
transition shiftsδωp,a and δωq,a. For two static distributions
characterized by standard deviationsσpp andσqq, this effect can
be characterized by a correlation coefficientFpq,

which is the normalized covariance ofδωp,a andδωq,a over the
ensemble29,35,69,101,105-107. Fpq can take on values between-1
and +1, where the magnitude ofFpq reflects the degree of
correlation of the individual frequencies. As illustrated in Figure
14, whenσpp ) σqq, complete correlation (Fpq ) +1) means
that the shift from the central frequency for each member of
the ensemble is the same (ωp,a - ωq,a ) ωp,a

0 - ωq,a
0 ).

Similarly, Fpq ) -1 is completely anticorrelated, indicating that
the shift is equal but opposite (ωp,a + ωq,a ) ωp,a

0 + ωq,a
0 ).107 In

the case of complete correlation or anticorrelation, there exists
a linear regression relationship between the frequency-shift
variables such thatδωp,a ) (δωq,aσpp/σqq.

From the local-mode perspective, the relative energy shifts
experienced by two vibrational transitions can be interpreted
as arising from fluctuations in the local vibrational potential or

Figure 14. Schematic representation of the correlation of the bath-
induced frequency shifts for system eigenstatesp and q with eigen-
frequenciesωp,a andωq,a. (a) Correlated (Fpq ) +1) and (b) anticorre-
lated (Fpq ) -1) joint distributions with inhomogeneous standard
deviations ofσpp andσqq. For Fpq ) +1, the members within the joint
inhomogeneous distribution are shifted equally from the central
frequency such thatωp,a - ωq,a ) ωp,a

0 - ωq,a
0 when σpp ) σqq. The

shift is equal but occurs in the opposite directions forFpq ) -1 such
that ωp,a + ωq,a ) ωp,a

0 + ωq,a
0 . (c) Time-dependent frequency fluc-

tuations with arbitrary correlation. The variablesτpp(qq) andσpp(qq) are
the fluctuation correlation time and fluctuation amplitudes parameters
of the stochastic Kubo line-shape model, respectively. For more details,
see the text.

Fpq )
〈δωp,aδωq,a〉B

σppσqq
(22)
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from fluctuations in the couplings between vibrations. In each
case, the origin of the fluctuations directly influences the relative
shifts in energy of the system eigenstates. If the interaction with
the solvent leads to variation in the local vibrational potential
(diagonal disorder) while the coupling remains constant, then
the two transition energies will shift together, leading to
correlated fluctuations (Fpq > 0). For variation in the coupling
between vibrations, or off-diagonal disorder, interactions shift
the transition frequencies of the coupled modes in an anticor-
related fashion (Fpq < 0).38,103,108-110 The experimental distinc-
tion between correlated and anticorrelated broadening forms the
basis for revealing whether the fluctuations arise from the
solvent acting on the local potential or are of a conformational
nature.36,41,111

Cross peaks in a 2D IR correlation spectrum arise from
propagation under two different distributions duringτ1 andτ3,
and their line shapes are sensitive to the cross correlation of
their transition frequency distributions. In the case of totally
correlated broadening (Fpq ) + 1), the transition energy shift
δωp,a corresponds to an equal shift inδωq,a. In the process that
forms a cross peak betweenωp,a andωq,a, the phase acquired
during the evolution period (ωp,aτ1) is transferred to the second
transition so that the memory of the frequency in the evolution
period is retained in the detection period. In a rephasing
experiment, this process results in the focusing of the original
polarization, and an echo forms on the second transitionωq,a.
This echo formation leads to a cross peak that is elongated
parallel to the diagonal peaks (Figure 15a). For totally anticor-
related broadening (Fpq ) -1), the shift in energy ofωp,a is
opposite to the shift inωq,a. In inducing a cross peak, the phase
acquired by members of the distribution duringτ1 is transferred
to the second distribution in an inverted manner. Macroscopic
focusing of the initial coherence is not possible in the rephasing
experiment because dephasing by the ensemble in the detection
period continues. Thus, cross peaks will be suppressed in the
rephasing spectrum (Figure 15d). However, the refocusing of
the ensemble is seen in the conjugate, nonrephasing experiment
because of the inverse frequency-shift relationship betweenωp,a

and ωq,a. This leads to pronounced cross peaks in the non-
rephasing spectrum (Figure 15d) that are elongated along the
antidiagonal axis.35,69The 2D IR correlation spectrum combines
the selectivity of rephasing and nonrephasing spectra to cor-
related and anticorrelated broadening (Figure 15c and f).35 The
ellipticity and direction of elongation of the cross peaks relative
to the diagonal peaks gives a measure of the degree of
correlation. This elongation can be quantified by the angleΨ;
tan(Ψ) ) (AR - ANR)/(AR + ANR), where (AR) and (ANR) are
the amplitudes of the various peaks in the rephasing and
nonrephasing spectra, respectively.

The correlation effects can also be extended to time-dependent
transition frequencies by building on the stochastic model75,112

that was used to describe the line shapes in Figure 13. As
pictured in Figure 14c, we can describe the fluctuations of two
transition frequenciesδωp,0 andδωq,0 with amplitudesσpp and
σqq, each with a characteristic correlation time. We model the
time-dependent system-bath dynamics by an exponentially
decaying energy-gap correlation function

whereτpq is the auto- (p ) q) or cross- (p * q) correlation time
andFpp ≡ 1. The cross-correlation functionsúpq correlates the
time scale and amplitude of frequency fluctuations between

transitions. Forúpq, the correlation coefficient reflects the zero-
time amplitude and the cross-correlation timeτpq e τpp, τqq.

B. 2D IR Relaxation Experiments.The dynamics of these
transition-energy fluctuations can be monitored, regardless of
their origin, by 2D IR relaxation experiments, which involve
collecting 2D IR correlation spectra as a function of the waiting
time τ2.21,36 Changes in the 2D line shapes as a function ofτ2

are related to the magnitude and time scale of the fluctuations
of a particular transition. For fluctuations characterized by a
correlation timeτc, the 2D line shapes will evolve from an
inhomogeneous to a homogeneous shape as the waiting period
is varied fromτ2 < τc to τ2 > τc. When the correlation time for
the transition frequency fluctuations is longer than the time scale
of the experiment (τ1 + τ2 + τ3 , τc), we observe a 2D line
shape in the inhomogeneous limit,στc . 1 (Figure 13c). When
τ2 . τc, the system can sample all frequencies within the
distribution on the time scale of the experiment, and the 2D
line shapes will appear homogeneous (Figure 13a). For a single
dynamical time scale, the change in line shape will represent
the progression from elliptical to symmetric seen in Figure 13c-
a. Because the cross-peak line shapes are influenced by the

úpq(t) ) 〈δωp,0(t) δωq,0(0)〉B ) Fqpσppσqq exp(-
|t|
τpq

) (23)

Figure 15. Effects of correlated line broadening on 2D line shapes
for fully correlated (Fpq ) + 1) (a-c) and fully anticorrelated (Fpq )
-1) (d-f) cases for rephasing (a, d), nonrephasing (b, e), and 2D
correlation spectra (c, f). The simulations are done for the RDC six-
level system assuming that the dynamics of system-bath interactions
are completely separable into fast (Γaa ) Γss ) Γas ) 2 cm-1) and
slow (σaa ) σss ) σas ) 10 cm-1) components. (Refer to the text and
Supporting Information for more details.) Note that in the case ofFpq

) +1 cross peaks are tilted parallel to the diagonal in the rephasing
spectrum (a), and the amplitudes of the cross peaks are suppressed
relative to diagonal peaks in the nonrephasing spectrum (b). ForFpq )
-1, the cross peaks are tilted perpendicular to the diagonal, and their
amplitudes are enhanced relative to the diagonal peaks in the non-
rephasing spectrum (e) whereas the cross-peak amplitudes are sup-
pressed in the rephasing spectrum (d). The difference in the cross-
peak intensities in the correlation spectra (c-f) is due to the imbalance
in the number of corresponding pathways in the generation of the
nonrephasing signal. The contours are plotted at 8% intervals.
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parameters describing the cross-correlation functionúpq, the time
dependence of the rephasing (AR) and nonrephasing amplitude
(ANR), and consequently that ofΨ, will be proportional to the
dynamics of the correlated fluctuations.

Two-dimensional IR correlation spectra of RDC in chloro-
form were collected for waiting periods ofτ2 ) 0, 1.4, 2.9, 6.2,
and 9.5 ps. Because Liouville pathways for cross peaks evolve
as superpositions of the symmetric (s) and asymmetric (a) states
during τ2, these waiting times were chosen to correspond to
the maxima of the quantum beats atωs,a

0 ) 71 cm-1 (469
fs).113,114Figure 16 shows the 2D correlation spectra forτ2) 0,
2.9, and 6.2 ps and illustrates the influence of the solvent on
the frequency fluctuations of the coupled vibrations for RDC
in CHCl3. The four diagonal peaks are elongated along the
diagonal, indicating a fairly inhomogeneous system. The cross
peaks are also elongated and tilted parallel to the diagonal, which
shows that the transition-energy fluctuations of eigenstates a
and s are correlated (Fas > 0). For increased waiting times, the
elongation of the line shapes becomes less pronounced, and the
tilt disappears. Another signature of the time-dependent dynam-
ics and the amplitude decay of the energy-gap correlation
function duringτ2 is the apparent rotation of the node between
positive and negative features from being aligned along the
diagonal to being aligned alongω3. This change arises from
changes in the relative amplitudes of cross peaks in the rephasing
and nonrephasing spectra ranging from a value ofAR/ANR ≈ 6
(Ψ ≈ 45°) at τ2 ) 0 to a value of∼1.2 (Ψ ≈ 15°) at τ2 ) 9.5
ps.35 In a similar fashion, the difference between the magnitudes
of two-color three-pulse photon echo peak shifts obtained from
rephasing and nonrephasing experiments has been used to study
solvation dynamics of coupled electronic transitions.115 These
features indicate solvent-induced frequency fluctuations that lead
to a gradual loss of memory of the initial frequencies and their

correlation, consistent with a system undergoing strongly
correlated fluctuations on a picosecond time scale.

We used the correlation functions given in eq 23 to model
the correlated solvation dynamics of the coupled vibrations of
RDC. Omitting the harmonically forbidden transitions, there are
10 energy-gap correlation functions characterizing the dephasing
dynamics of the system, which include a total of 20 amplitude
and correlation-time parameters. However, this number is greatly
reduced when the seven energy-gap correlation functions that
involve doubly excited states are expressed using the two
autocorrelation functions and a single cross-correlation function,
úaa, úss, or úas. This results in eight independent parameters
characterizing the system-bath dynamics. These include the
correlation coefficientFas, the energy-gap fluctuation amplitudes
σaa and σss, the fluctuations correlation timesτaa, τss, andτas,
and the transition dipole strengthsµa,0 andµs,0.

We calculated the total nonlinear response for rephasing,SI,
and nonrephasing,SII (and SIII is included forτ2 ) 0 only)
experiments separately as a function ofτ1, τ2, and τ3 by
evaluating the nonlinear dephasing functions for all of the
Liouville pathways in the RDC six-level system and summing
over all of the individual contribution for a given wavevector
matching condition. The harmonic approximation for the
correlation functions reduces the number of nonlinear dephasing
functions required from 40 to 12, as described in the Supporting
Information.73 We also incorporated the effect of molecular
reorientation on the dynamics for each time periodτ1, τ2, and
τ3. The global nonlinear least-squares fitting of the 2D correla-
tion spectra for all values ofτ2 uses a modified Levenberg-
Marquart algorithm and a finite difference Jacobian. The best-
fit parameters areµa,0/µs,0) 1.06( 0.04,σaa) 7.4( 0.6 cm-1,
σss ) 5.2 ( 0.4 cm-1, τaa ) 2.0 ( 0.2 ps,τss ) 2.0 ( 0.4 ps,
τas) 1.2( 0.4 ps, andFas) 0.9( 0.1, indicating a high degree

Figure 16. τ2-dependent 2D IR correlation spectra of RDC in chloroform forτ2 (a) 0, (b) 2.9, and (c) 6.2 ps and the corresponding spectra (d-f)
calculated using the best-fit results with a correlation coefficientFas of 0.9 ( 0.1. For other best-fit parameters, see the text. Note that forτ2 ) 0
the diagonal peaks are elongated along the diagonal, showing the effects of inhomogeneous broadening. The cross peaks are also elongated and
tilted parallel to the diagonal, indicating that the transition-energy fluctuations of coupled eigenstatesa ands are fairly correlated as evident from
Fas ) 0.9 ( 0.1. Asτ2 increases, the elongation becomes less pronounced, and the tilt disappears because of the exponential loss of memory of the
initial frequencies. The observations indicate a system undergoing strongly correlated fluctuations on a picosecond time scale. Contour levels are
6% for the first three in each direction and 12% otherwise.
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of correlation in the fluctuations of the two transitions. Figure
16d-f shows the 2D correlation spectra calculated using the
best-fit parameters, which successfully reproduce the experi-
mental spectra as a function ofτ2 in terms of the tilt of the
cross and diagonal peaks, their degree of elongation, absorption
line widths, and the intensities. A clear point of comparison is
the apparent rotation of the node between positive and negative
lobes.

From the elongation of the diagonal peaks in Figure 16, we
can see that that the system is inhomogeneously broadened. This
observation is consistent with the best-fit results, which give a
στc product of 2.5 for the autocorrelation functions, proving
that the dynamics are in the slow-modulation limit. Relative to
the homogeneous 2D line shapes observed for RDC in hexane,
RDC exhibits a considerable asymmetric broadening of the
linear absorption line widths from 2.6 cm-1 in hexane to>8
cm-1 in chloroform (Figure 8), indicating that the disorder arises
from the specific RDC-CHCl3 interactions. It has been shown
that fundamental and overtone frequencies of-CdO stretching
vibrations of ketones exhibit large asymmetric broadening of
the absorption band as well when dissolved in weakly H-bonding
solvents such as CH2Cl2 and CHCl3, with CHCl3 having the
larger effect.116 RDC in CH3OH solution also shows extensive
broadening of the symmetric and asymmetric-CtO absorption
bands together with the red shifting of the-CdO stretching
frequencies of the acetylacetonato ligand by∼25 cm-1.

A second set of diagonal and cross peaks shifted relative to
the primary resonances may also arise from these weak
H-bonding interactions. These resonances are seen along the
diagonal at (ω1, ω3) ) (1998, 1998) cm-1, below the diagonal
at (ω1, ω3) ) (1998, 1980) cm-1 and along the off-diagonal at
(ω1, ω3) ) (2076, 1980) cm-1 in the 2D correlation spectra of
RDC. The existence of a second distinct species is very clear,
and the corresponding additional resonances become more
pronounced in 2D correlation spectra forτ2 ) 3 and 6 ps as the
diagonal elongation and the tilt of the cross peaks disappear.
Theτ2 dependence of the 2D correlation spectra also indicates
that the second species has a longer population lifetime and
that the interconversion between two different species does not
occur on our experimental time scale. These additional reso-
nances, which are red shifted by∼16 cm-1 from ωa,0

0, are
relatively low-amplitude. From absorption spectra after exposure
to ultraviolet light and using RDC recrystallized from different
solvents, we can rule out impurities, photochemical products,
and isotopomers of RDC as the origin of these new resonances.
These observations suggest that there are two distinctly different
solvated species, and the resulting 2D spectrum is a superposi-
tion of two different spectra, each of which has multiple 2D
resonances. The effect of this relatively strong solvation for a
second species is to shift the asymmetric vibration more than
the symmetric. It is possible that these two species are RDC
with CHCl3 H-bonded to the-CdO of the acac ring and RDC
with no H-bonding. This interaction would affect the asymmetric
vibration to a greater extent because the H-bonding coordinate
would be parallel to the asymmetric stretching coordinates.
Although it has been shown for the iridium analogue of RDC
that metal-metal interactions lead to dimer formation and
associated extra resonances due to the change in molecular
symmetry in C6H6 solution,117 our experiments are performed
at RDC concentrations too low to induce dimerization. An
analogous feature suggesting that specific RDC-solvent inter-
actions may induce a new resonance was seen for symmetric
vibration in the FTIR spectrum of RDC in a polymer matrix at
150 K.29

The highly correlated fluctuations that were observed are
consistent with solvent-induced frequency shifts to two strongly
coupled vibrations. The metal-carbonyl stretching frequencies
are very sensitive to the electron density of the metal atom
because of dπ-π* bonding interactions that couple the vibrations
in this system.96 Because RDC is a planar (d8) coordination
compound, the Rh atom is exposed to solvent molecules in the
primary solvation shell along the two axial coordinates. The
fluctuations of the solvent density will modulate the electron
density of the Rh atom through dispersive electrostatic interac-
tions and change the vibrational potentials of the oscillators in
a correlated manner. Another mechanism that would modulate
the electron density of the Rh and cause correlated fluctuations
of -CtO stretching frequencies is the solvent-induced change
in electron density of theπ system of the acac ring, which
interacts with the Rh nonbonding d orbital.117 Additional
modeling in the basis of a local CtO mode Hamiltonian has
also shown that the asymmetric linear absorption line shapes
can be explained in terms of disorder in the individual local-
mode anharmonicities, which would reflect the variation of the
local solvent environment.29,35,107

X. Discussion and Outlook

The experiments described above were motivated by the need
for methods capable of interrogating transient molecular struc-
ture in solution, describing structural variation, and following
the dynamics of those structures. In a general sense, 2D IR
spectra can be used to characterize time-dependent couplings
both between vibrational coordinates and between vibrations
and their surroundings. These quantities are necessary to
describe the dynamics of molecules in solution. We have
presented an approach for acquiring 2D IR correlation spectra
and interpreting the underlying molecular dynamics through an
analysis of the time-evolving positions, amplitudes, and line
shapes of resonances in a 2D IR correlation spectrum. Even
for a system as simple as the terminal carbonyl stretches of
RDC, 2D IR experiments provide information that cannot be
accessed by other methods and reveal a far more detailed and
accurate picture of the solute structure, solute-solvent interac-
tions, and vibrational relaxation dynamics than those obtained
from other linear and nonlinear spectroscopies.

Information on the interactions between coordinates, their
relative orientation, and their dynamics is revealed through
analyses of cross peaks. For systems where the anharmonicities
are comparable to the absorption line widths or systems with
many overlapping resonances and/or structural heterogeneity,
it may not be possible to isolate the cross peak from other
spectral features with the current methods. Such cases necessitate
the development of new, generalized ways to access different
spectral features selectively in a 2D correlation spectrum. For
example, linear combinations of 2D IR spectra of proteins and
peptides taken with different polarization geometries have been
shown to suppress contributions from the diagonal peaks and
expose the underlying weaker cross peaks.81,82 Additional
selectivity may be achieved by manipulating the shape, phase,
and timing of the input pulses, thereby changing the relative
phase between the signal and local oscillator fields in rephasing
and nonrephasing experiments. Methods analogous to phase
cycling in multidimensional NMR could be used to isolate signal
contributions and could eliminate the need to phase the 2D
spectra in an ad hoc manner in theω1 dimension. Selectivity
can also be achieved from multiresonant experiments that probe
different types of vibrational species and further development
in IR analogues of pulsed NMR experiments based on higher-
order nonlinear spectroscopy.118
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The Fourier transform (FT) method presented here using
short, broadband pulses is often contrasted with the double-
resonance (DR) pump-probe technique where the change in
transmission of a broadband probe beam through a sample is
monitored as a function of a tunable narrow-band pump pulse.7,37

There are two fundamental differences in the experiments: (1)
the DR method has an intrinsic local oscillator for heterodyne
detection, and (2) the signal in the FT experiment includes
contributions from interaction processes involving four different
transition dipole moments, which are not present in the DR
method. Because the transmitted probe acts as the local oscillator
for intrinsic heterodyne detection, the DR experiment measures
a correlation spectrum with rephasing and nonrephasing pro-
cesses directly and avoids the complications of “phasing” 2D
correlation spectra. However, without control of the local
oscillator phase, the DR experiment will always measure an
absorptive response, and there are advantages to analyzing
rephasing and nonrephasing spectra separately. For instance,
nonrephasing spectra can potentially reveal multiple overlapping
transitions along the diagonal that would be merged together
in rephasing or correlation spectra. The four-transition processes
in FT experiments carry extra information about the sign of
the transition dipole moments2,119and probe coherent dynamics
of the coupled singly excited states duringτ2. The lack of these
processes in DR experiments results in all Liouville pathways
being dependent on one angle in the microscopic frame and
the absence of peak 5 (see Figure 10c). Superpositions of singly
excited vibrational levels are created duringτ2 in FT experi-
ments, which modulate the amplitude of the cross peaks in
rephasing spectra and diagonal peaks in nonrephasing spectra
during the waiting period. Such dynamics can interfere with
the modeling of structures that are derived from amplitudes in
the spectrum. Finally, it should be noted that the DR methods
are faced with an intrinsic tradeoff between time and frequency
resolution in the choice of bandwidth for the pump field, a
compromise that is not present in FT experiments. This becomes
problematic for the study of systems where there is no intrinsic
separation of time scales in the vibrational dynamics that could
be used to choose an appropriate pump pulse length or
bandwidth.

Referring to the flowchart in Figure 1, there are additions
and modifications to consider when studying more complicated
molecular systems. Besides the need to treat multiple vibrations,
a proper treatment of nonlinear vibrational spectroscopy should
account for vibrational dephasing, population relaxation dynam-
ics, and reorientational dynamics, which occur on similar time
scales. Here, only the effects of vibrational dephasing were
included in the formulation of the system-bath interactions,
and population relaxation was added phenomenologically. In
multilevel systems, the fastest relaxation processes may indeed
arise from population relaxation. Methods are required to
account for coherent and incoherent population transfer pro-
cesses to describe the positions, amplitudes, and line widths of
the resonances in 2D IR spectra accurately.34,120Ongoing studies
of 2D IR spectra of RDC in hexane collected as a function of
the waiting period provide clear evidence of coherence transfer
and incoherent population transfer among the two-coupled
symmetric and asymmetric eigenstates. These relaxation pro-
cesses affect the determination of angles between the two-
coupled vibrations and substantiate the claim that the determi-
nation of structural variables cannot be decoupled from the
treatment of bath-induced relaxation processes. Also, steps
should be taken toward modeling the 2D IR spectrum in the
local-mode basis. Our approach to integrating the structure of

the system with the bath-induced dynamics starts with a local-
mode description of the system states and introduces the
system-bath interactions at the level of the system eigenstates.
Although this approach has certain advantages at the level of
theory, insight into the specific structural changes induced by
the bath maybe lost. In general, one would like to incorporate
the effects of the system-bath interactions in the local-mode
picture, allowing a direct modeling of time-dependent confor-
mational fluctuations in solution. The nonlinear exciton equa-
tions presented by Mukamel and co-workers have been devel-
oped with this in mind.1

The observations presented here suggest that 2D IR methods
will find broad application in the study of chemical, physical,
and biological problems. For the study of liquids and solutions,
a tool that reveals intra- and intermolecular interactions forms
the basis for understanding the types of forces that govern liquid
structure, conformational changes, reaction dynamics, and
transport processes. For studies of conformational changes or
fluctuations, the correlated shifts between multiple vibrational
transitions determined from 2D spectra can be used to deduce
the amplitude and time scale of dynamics such as torsion angle
motion. Correlated frequency shifts induced by variation of
coupling and/or interaction with a bath are often encountered
in the study of disorder in excitons, particularly in molecular
aggregates. Separation of the diagonal and off-diagonal disorder
in such systems is a general problem that could be facilitated
by 2D cross-peak line-shape analysis. Two-dimensional IR line-
shape analysis and relaxation experiments on vibrational reso-
nances that are particularly sensitive to local solvent structure,
such as OH and NH resonances, can be used to reveal the many-
body molecular dynamics of liquids and the structural details
of solvation. For such experiments, computational methods
including molecular dynamics simulation and ab initio methods
will be important in helping to correlate intermolecular structure
with vibrational frequency shifts.40,41,121-123 In molecular liquids,
these techniques also promise to help address questions about
heterogeneous dynamics, in which the dynamics of different
subensembles vary. To the degree that these subensembles can
be separated by frequency and the time scale of dynamics, the
2D IR line shape can also be used to characterize the degree of
heterogeneity and the time scale of interchange between
ensembles. The applicability of these methods extends well
beyond liquids and solution-phase problems. Numerous other
condensed matter systems including molecular crystals, semi-
conductors, quantum dots, and interfaces could draw on 2D
techniques either in the optical, infrared, or terahertz regimes
to study the interactions of electrons, nuclei, and/or collective
coordinates such as phonons. Also, in the gas phase, 2D methods
stand to help considerably with revealing couplings and orienta-
tion and assigning progressions in congested spectra.

One of the most appealing consequences of a transient
structural tool is that 2D IR spectroscopy can be used as a probe
of nonequilibrium processes such as optically initiated chemical
reactions or biophysical processes. Photochemical triggering of
a chemical reaction can be followed with 2D IR probing to
deduce the structural changes accompanying the event. Alter-
natively, one can imagine correlating the structure of reactants
and products in such a process by phototriggering during the
waiting period. Two-dimensional IR could also be coupled with
a variety of rapid initiation techniques that exist for biophysical
processes such as protein folding, denaturing, or binding of a
substrate.

Realizing these applications still requires advances in the
experimental procedures and the extension of theoretical models
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and data analysis tools. This further development promises to
increase the applicability of 2D IR spectroscopy as a commonly
used analytical tool to study systems with many degrees of
freedom. Through its ability to reveal structural information on
a disordered ensemble with picosecond time resolution, new
insight will be obtained into intra- and intermolecular forces in
condensed phases, which in turn will help in the development
of models and theoretical tools for studying highly complex
systems. By using 2D IR methods to follow structural changes
during time-dependent chemical processes either near equilib-
rium with relaxation experiments or probing after the rapid
optical initiation, we can hope to observe chemical dynamics
in solution directly.
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nonlinear orientational response for symmetric diffusers along
with the nonvanishing tensor components of a spherical diffuser
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(32) Khalil, M.; Demirdöven, N.; Tokmakoff, A.Phys. ReV. Lett.2003,

90, 47401.
(33) Gallagher Faeder, S. M.; Jonas, D. M.J. Phys. Chem. A1999, 103,

10489.
(34) Piryatinski, A.; Chernyak, V.; Mukamel, S.Chem. Phys.2001, 266,

285.
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